Simulating thermal qubits through thermofield dynamics
- URL: http://arxiv.org/abs/2111.09969v6
- Date: Sun, 10 Dec 2023 16:43:59 GMT
- Title: Simulating thermal qubits through thermofield dynamics
- Authors: G. X. A. Petronilo, M. R. Ara\'ujo, Clebson Cruz
- Abstract summary: This work explores a didactic approach to simulate thermal qubit systems through Thermofield Dynamics (TFD)
The results show that the Bloch sphere representation for a qubit can be written in terms of the Bogoliubov transformation.
This work introduces thermofield dynamics through quantum computing to teachers and curious students interested in teaching and learning this important field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has attracted the attention of the scientific community in
the past few decades. The development of quantum computers promises one path
toward safer and faster ways to treat, extract, and transfer information.
However, despite the significant advantages of quantum computing, the
development of quantum devices operating at room temperature has been
compromised by the thermal decoherence process. In addition, in most
undergraduate and graduate quantum mechanics courses, the study of thermofield
dynamics is usually neglected. In this scenario, this work explores a didactic
approach to simulate thermal qubit systems through Thermofield Dynamics (TFD),
applied in a quantum computing setup. The results show that the Bloch sphere
representation for a qubit can be written in terms of the Bogoliubov
transformation, which allows a practical construction for the thermal qubits in
a quantum computing setup. Therefore, this work introduces thermofield dynamics
through quantum computing to teachers and curious students interested in
teaching and learning this important field of studying the temperature impacts
on quantum protocols using the TFD technique.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum Computers, Quantum Computing and Quantum Thermodynamics [0.0]
Quantum thermodynamics aims at extending standard thermodynamics to systems with sizes well below the thermodynamic limit.
A rapidly evolving research field, which promises to change our understanding of the foundations of physics.
arXiv Detail & Related papers (2024-04-15T10:53:13Z) - Quantum computation in fermionic thermal field theories [2.686336957004475]
We study thermal field theories involving only fermions using quantum algorithms.
We show numerical results such as the thermal distribution and the energy density of thermal field theories for Majorana fermions in 1+1 dimensions.
arXiv Detail & Related papers (2024-04-11T16:57:15Z) - Study on quantum thermalization from thermal initial states in a superconducting quantum computer [0.0]
We propose a method to address the problem of preparing thermal states in quantum physics.
We experimentally validate our approach using IBM quantum devices, providing results for unusal relaxation in quenches as predicted for the IBM qubit.
This demonstration underscores that our method can streamline the investigation of thermal states and thermalization in quantum physics.
arXiv Detail & Related papers (2024-01-16T09:01:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum
Simulation [5.188498150496968]
We present a quantum kernel function (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
As compared to its classical counterpart, namely the kernel method (KPM), QKFE has an exponential advantage in the cost of both time and memory.
We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice.
arXiv Detail & Related papers (2022-02-02T18:00:04Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum field thermal machines [0.0]
We present a detailed proposal how to realize a quantum machine in one-dimensional ultra-cold atomic gases.
We propose models for compression on the system to use it as a piston, and coupling to a bath that gives rise to a valve controlling heat flow.
The active cooling achieved in this way can operate in regimes where existing cooling methods become ineffective.
arXiv Detail & Related papers (2020-06-01T18:08:57Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.