Instance-Adaptive Video Compression: Improving Neural Codecs by Training
on the Test Set
- URL: http://arxiv.org/abs/2111.10302v2
- Date: Fri, 23 Jun 2023 12:47:50 GMT
- Title: Instance-Adaptive Video Compression: Improving Neural Codecs by Training
on the Test Set
- Authors: Ties van Rozendaal, Johann Brehmer, Yunfan Zhang, Reza Pourreza, Auke
Wiggers, Taco S. Cohen
- Abstract summary: We introduce a video compression algorithm based on instance-adaptive learning.
On each video sequence to be transmitted, we finetune a pretrained compression model.
We show that it enables a competitive performance even after reducing the network size by 70%.
- Score: 14.89208053104896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a video compression algorithm based on instance-adaptive
learning. On each video sequence to be transmitted, we finetune a pretrained
compression model. The optimal parameters are transmitted to the receiver along
with the latent code. By entropy-coding the parameter updates under a suitable
mixture model prior, we ensure that the network parameters can be encoded
efficiently. This instance-adaptive compression algorithm is agnostic about the
choice of base model and has the potential to improve any neural video codec.
On UVG, HEVC, and Xiph datasets, our codec improves the performance of a
scale-space flow model by between 21% and 27% BD-rate savings, and that of a
state-of-the-art B-frame model by 17 to 20% BD-rate savings. We also
demonstrate that instance-adaptive finetuning improves the robustness to domain
shift. Finally, our approach reduces the capacity requirements of compression
models. We show that it enables a competitive performance even after reducing
the network size by 70%.
Related papers
- NVRC: Neural Video Representation Compression [13.131842990481038]
We propose a novel INR-based video compression framework, Neural Video Representation Compression (NVRC)
NVRC, for the first time, is able to optimize an INR-based video in a fully end-to-end manner.
Our experiments show that NVRC outperforms many conventional and learning-based benchmark entropy.
arXiv Detail & Related papers (2024-09-11T16:57:12Z) - Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - Hybrid Spatial-Temporal Entropy Modelling for Neural Video Compression [25.96187914295921]
This paper proposes a powerful entropy model which efficiently captures both spatial and temporal dependencies.
Our entropy model can achieve 18.2% saving on UVG dataset when compared with H266 (VTM) using the highest compression ratio.
arXiv Detail & Related papers (2022-07-13T00:03:54Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - Overfitting for Fun and Profit: Instance-Adaptive Data Compression [20.764189960709164]
Neural data compression has been shown to outperform classical methods in terms of $RD$ performance.
In this paper we take this concept to the extreme, adapting the full model to a single video, and sending model updates along with the latent representation.
We demonstrate that full-model adaptation improves $RD$ performance by 1 dB, with respect to encoder-only finetuning.
arXiv Detail & Related papers (2021-01-21T15:58:58Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Channel-wise Autoregressive Entropy Models for Learned Image Compression [8.486483425885291]
In learning-based approaches to image compression, codecs are developed by optimizing a computational model to minimize a rate-distortion objective.
We introduce two enhancements, channel-conditioning and latent residual prediction, that lead to network architectures with better rate-distortion performance.
At low bit rates, where the improvements are most effective, our model saves up to 18% over the baseline and outperforms hand-engineered codecs like BPG by up to 25%.
arXiv Detail & Related papers (2020-07-17T03:33:53Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.