Accelerating Learned Video Compression via Low-Resolution Representation Learning
- URL: http://arxiv.org/abs/2407.16418v1
- Date: Tue, 23 Jul 2024 12:02:57 GMT
- Title: Accelerating Learned Video Compression via Low-Resolution Representation Learning
- Authors: Zidian Qiu, Zongyao He, Zhi Jin,
- Abstract summary: We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
- Score: 18.399027308582596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the field of learned video compression has witnessed rapid advancement, exemplified by the latest neural video codecs DCVC-DC that has outperformed the upcoming next-generation codec ECM in terms of compression ratio. Despite this, learned video compression frameworks often exhibit low encoding and decoding speeds primarily due to their increased computational complexity and unnecessary high-resolution spatial operations, which hugely hinder their applications in reality. In this work, we introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning, aiming to significantly enhance the encoding and decoding speeds. Firstly, we diminish the computational load by reducing the resolution of inter-frame propagated features obtained from reused features of decoded frames, including I-frames. We implement a joint training strategy for both the I-frame and P-frame models, further improving the compression ratio. Secondly, our approach efficiently leverages multi-frame priors for parameter prediction, minimizing computation at the decoding end. Thirdly, we revisit the application of the Online Encoder Update (OEU) strategy for high-resolution sequences, achieving notable improvements in compression ratio without compromising decoding efficiency. Our efficiency-optimized framework has significantly improved the balance between compression ratio and speed for learned video compression. In comparison to traditional codecs, our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM. Furthermore, when contrasted with DCVC-HEM, our approach delivers a comparable compression ratio while boosting encoding and decoding speeds by a factor of 3 and 7, respectively. On RTX 2080Ti, our method can decode each 1080p frame under 100ms.
Related papers
- High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - Low-complexity Deep Video Compression with A Distributed Coding
Architecture [4.5885672744218]
Prevalent predictive coding-based video compression methods rely on a heavy encoder to reduce temporal redundancy.
Traditional distributed coding methods suffer from a substantial performance gap to predictive coding ones.
We propose the first end-to-end distributed deep video compression framework to improve rate-distortion performance.
arXiv Detail & Related papers (2023-03-21T05:34:04Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
This paper presents PredEncoder, a hybrid video compression framework based on the concept of predictive auto-encoding.
A variable-rate block encoding scheme has been proposed in the paper that leads to remarkably high quality to bit-rate ratios.
arXiv Detail & Related papers (2020-04-08T20:49:25Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
We propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network.
In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides.
arXiv Detail & Related papers (2020-03-04T09:31:37Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.