Rotating Bose gas dynamically entering the lowest Landau level
- URL: http://arxiv.org/abs/2111.10415v2
- Date: Mon, 7 Feb 2022 19:27:42 GMT
- Title: Rotating Bose gas dynamically entering the lowest Landau level
- Authors: Vaibhav Sharma and Erich J Mueller
- Abstract summary: We model the dynamics of a condensed Bose gas in a rotating anisotropic trap.
The condensate stretches along one direction and is squeezed along another, becoming long and thin.
This preparation of a lowest Landau level condensate can be an important first step in realizing bosonic analogs of quantum Hall states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by recent experiments, we model the dynamics of a condensed Bose
gas in a rotating anisotropic trap, where the equations of motion are analogous
to those of charged particles in a magnetic field. As the rotation rate is
ramped from zero to the trapping frequency, the condensate stretches along one
direction and is squeezed along another, becoming long and thin. When the trap
anisotropy is slowly switched off on a particular timescale, the condensate is
left in the lowest Landau level. We use a time dependent variational approach
to quantify these dynamics and give intuitive arguments about the structure of
the condensate wavefunction. This preparation of a lowest Landau level
condensate can be an important first step in realizing bosonic analogs of
quantum Hall states.
Related papers
- Dynamics of polaron formation in 1D Bose gases in the strong-coupling
regime [0.0]
We discuss the dynamics of the formation of a Bose polaron when an impurity is injected into a weakly interacting Bose condensate.
We use Truncated Wigner simulations to show under what conditions the influence of quantum fluctuations is small.
arXiv Detail & Related papers (2023-04-27T19:55:18Z) - Bohmian analysis of dark solutions in interfering Bose-Einstein condensates: The dynamical role of underlying velocity fields [0.0]
Bohmian mechanics is considered as an additional tool to explore and analyze the formation and evolution in real time of the soliton arrays.
To better appreciate the subtleties of free versus bound dynamics, two cases are discussed.
arXiv Detail & Related papers (2022-10-24T12:45:34Z) - Experimental Demonstration of Topological Charge Protection in Wigner
Current [3.093409936654924]
We reconstruct Wigner's current of quantum phase space dynamics for the first time.
We reveal the push-and-pull" associated with damping and diffusion due to the coupling of a squeezed vacuum state to its environment.
arXiv Detail & Related papers (2021-11-16T08:22:22Z) - Classical analog of qubit logic based on a magnon Bose-Einstein
condensate [52.77024349608834]
We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate.
The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit.
arXiv Detail & Related papers (2021-11-12T16:14:46Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Dynamical Zeeman resonance in spin-orbit-coupled spin-1 Bose gases [5.624813092014403]
The Bose-Einstein condensate is assumed to be in some superposed state of Zeeman sublevels and subject to a sudden shift of the trapping potential.
It is shown that the time-averaged center-of-mass oscillation and the spin polarizations of the Bose-Einstein condensate exhibit remarkable resonant peaks when the Zeeman fields are tuned to certain strengths.
arXiv Detail & Related papers (2020-07-28T11:23:39Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Zero-point excitation of a circularly moving detector in an atomic
condensate and phonon laser dynamical instabilities [0.0]
We study a circularly moving impurity in an atomic condensate for realisation of superradiance phenomena in tabletop experiments.
For sufficiently large rotation speeds, the zero-point fluctuations of the phonon field induce a sizeable excitation rate of the detector.
arXiv Detail & Related papers (2020-01-23T16:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.