論文の概要: Quaternion-Based Graph Convolution Network for Recommendation
- arxiv url: http://arxiv.org/abs/2111.10536v1
- Date: Sat, 20 Nov 2021 07:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 17:20:10.293783
- Title: Quaternion-Based Graph Convolution Network for Recommendation
- Title(参考訳): 四元系グラフ畳み込みネットワークによる推薦
- Authors: Yaxing Fang, Pengpeng Zhao, Guanfeng Liu, Yanchi Liu, Victor S. Sheng,
Lei Zhao, Xiaofang Zhou
- Abstract要約: Graph Convolution Network (GCN) はリコメンデータシステムで広く利用されている。
GCNは実世界でよく見られるノイズや不完全グラフに弱い。
本稿では,Queternion-based Graph Convolution Network (QGCN)レコメンデーションモデルを提案する。
- 参考スコア(独自算出の注目度): 45.005089037955536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolution Network (GCN) has been widely applied in recommender
systems for its representation learning capability on user and item embeddings.
However, GCN is vulnerable to noisy and incomplete graphs, which are common in
real world, due to its recursive message propagation mechanism. In the
literature, some work propose to remove the feature transformation during
message propagation, but making it unable to effectively capture the graph
structural features. Moreover, they model users and items in the Euclidean
space, which has been demonstrated to have high distortion when modeling
complex graphs, further degrading the capability to capture the graph
structural features and leading to sub-optimal performance. To this end, in
this paper, we propose a simple yet effective Quaternion-based Graph
Convolution Network (QGCN) recommendation model. In the proposed model, we
utilize the hyper-complex Quaternion space to learn user and item
representations and feature transformation to improve both performance and
robustness. Specifically, we first embed all users and items into the
Quaternion space. Then, we introduce the quaternion embedding propagation
layers with quaternion feature transformation to perform message propagation.
Finally, we combine the embeddings generated at each layer with the mean
pooling strategy to obtain the final embeddings for recommendation. Extensive
experiments on three public benchmark datasets demonstrate that our proposed
QGCN model outperforms baseline methods by a large margin.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は,ユーザおよびアイテムの埋め込みにおける表現学習能力の推奨システムに広く応用されている。
しかし、GCNはその再帰的なメッセージ伝達機構のため、実世界で一般的なノイズや不完全グラフに対して脆弱である。
文献では、メッセージ伝達中の特徴変換を削除することを提案するが、グラフ構造的特徴を効果的に捉えることはできない。
さらに、ユークリッド空間のユーザやアイテムをモデル化し、複雑なグラフをモデリングする際に高い歪みがあることが示され、グラフ構造的特徴を捉える能力が劣化し、準最適性能がもたらされる。
そこで本稿では,単純な四元系グラフ畳み込みネットワーク(qgcn)レコメンデーションモデルを提案する。
提案モデルでは,ハイパーコンプレックス四元数空間を用いてユーザとアイテムの表現と特徴変換を学習し,性能とロバスト性の両方を改善する。
具体的には、まずすべてのユーザとアイテムを四元数空間に埋め込む。
次に,4次特徴変換を伴う4次埋め込み伝搬層を導入し,メッセージ伝搬を行う。
最後に、各層で生成された埋め込みと平均プール戦略を組み合わせることで、最終的な埋め込みを推薦する。
3つのベンチマークデータセットに関する広範な実験は、提案するqgcnモデルがベースラインメソッドよりも大きなマージンで優れていることを示している。
関連論文リスト
- DiRW: Path-Aware Digraph Learning for Heterophily [23.498557237805414]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのための強力な表現学習ツールとして登場した。
我々は,プラグイン・アンド・プレイ戦略や革新的なニューラルアーキテクチャとみなすことができるDirected Random Walk (DiRW)を提案する。
DiRWには、歩行確率、長さ、および数の観点から最適化された方向対応パスサンプリング器が組み込まれている。
論文 参考訳(メタデータ) (2024-10-14T09:26:56Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - Orthogonal Graph Neural Networks [53.466187667936026]
グラフニューラルネットワーク(GNN)は,ノード表現の学習において優れていたため,大きな注目を集めている。
より畳み込み層を積み重ねることで、GNNのパフォーマンスが大幅に低下する。
本稿では,モデルトレーニングの安定化とモデル一般化性能の向上のために,既存のGNNバックボーンを拡張可能なOrtho-GConvを提案する。
論文 参考訳(メタデータ) (2021-09-23T12:39:01Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations [19.623379678611744]
グラフ畳み込みネットワーク(GCN)はグラフデータの表現学習に広く利用されている。
多くのグラフ分類アプリケーションにおいて、GCNベースのアプローチは従来の手法よりも優れている。
グラフコンテキスト対応ノード表現を用いた局所性保存型高密度GCNを提案する。
論文 参考訳(メタデータ) (2020-10-12T02:12:27Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。