論文の概要: Image-Like Graph Representations for Improved Molecular Property
Prediction
- arxiv url: http://arxiv.org/abs/2111.10695v1
- Date: Sat, 20 Nov 2021 22:39:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 10:33:58.063386
- Title: Image-Like Graph Representations for Improved Molecular Property
Prediction
- Title(参考訳): 分子特性予測のための画像的グラフ表現
- Authors: Toni Sagayaraj, Carsten Eickhoff
- Abstract要約: 本稿では,CubeMol と呼ばれる GNN の必要性を完全に回避する,新しい固有分子表現法を提案する。
我々の定次元表現は、トランスモデルと組み合わせると、最先端のGNNモデルの性能を超え、拡張性を提供する。
- 参考スコア(独自算出の注目度): 7.119677737397071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research into deep learning models for molecular property prediction has
primarily focused on the development of better Graph Neural Network (GNN)
architectures. Though new GNN variants continue to improve performance, their
modifications share a common theme of alleviating problems intrinsic to their
fundamental graph-to-graph nature. In this work, we examine these limitations
and propose a new molecular representation that bypasses the need for GNNs
entirely, dubbed CubeMol. Our fixed-dimensional stochastic representation, when
paired with a transformer model, exceeds the performance of state-of-the-art
GNN models and provides a path for scalability.
- Abstract(参考訳): 分子特性予測のためのディープラーニングモデルの研究は主に、より良いグラフニューラルネットワーク(GNN)アーキテクチャの開発に焦点を当てている。
新しいGNNの変種は性能を改善し続けているが、それらの修正は、その基本的なグラフ-グラフの性質に固有の問題を緩和する共通のテーマを共有している。
本研究では,これらの制限を検証し,gnnの必要性を完全に回避する新しい分子表現,cubemolを提案する。
我々の定次元確率表現は、変圧器モデルと組み合わせると、最先端のGNNモデルの性能を超え、拡張性を提供する。
関連論文リスト
- A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - On the Scalability of GNNs for Molecular Graphs [7.402389334892391]
グラフニューラルネットワーク(GNN)は、スパース演算の効率の低下、大規模なデータ要求、さまざまなアーキテクチャの有効性の明確さの欠如など、スケールのメリットをまだ示していない。
我々は,2次元分子グラフの公開コレクションにおいて,メッセージパッシングネットワーク,グラフトランスフォーマー,ハイブリッドアーキテクチャを解析する。
初めて、GNNは、深度、幅、分子数、ラベルの数、事前訓練データセットの多様性の増大によって、非常に恩恵を受けることを観察した。
論文 参考訳(メタデータ) (2024-04-17T17:11:31Z) - GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural
Networks [11.110435047801506]
本稿では, 分散保存アグリゲーション関数 (VPA) を提案する。
その結果, 正常化フリー, 自己正規化GNNへの道を開くことができた。
論文 参考訳(メタデータ) (2024-03-07T18:52:27Z) - Will More Expressive Graph Neural Networks do Better on Generative
Tasks? [27.412913421460388]
グラフニューラルネットワーク(GNN)アーキテクチャはしばしば過小評価される。
グラフ生成モデルの基盤となるGNNを、より表現力のあるGNNに置き換える。
高度なGNNは、他の17の非GNNグラフ生成アプローチで最先端の結果を達成することができる。
論文 参考訳(メタデータ) (2023-08-23T07:57:45Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。