論文の概要: A survey of dynamic graph neural networks
- arxiv url: http://arxiv.org/abs/2404.18211v1
- Date: Sun, 28 Apr 2024 15:07:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 15:35:41.205681
- Title: A survey of dynamic graph neural networks
- Title(参考訳): 動的グラフニューラルネットワークの探索
- Authors: Yanping Zheng, Lu Yi, Zhewei Wei,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
- 参考スコア(独自算出の注目度): 26.162035361191805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data, with applications spanning numerous domains. However, most research focuses on static graphs, neglecting the dynamic nature of real-world networks where topologies and attributes evolve over time. By integrating sequence modeling modules into traditional GNN architectures, dynamic GNNs aim to bridge this gap, capturing the inherent temporal dependencies of dynamic graphs for a more authentic depiction of complex networks. This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models. We present the mainstream dynamic GNN models in detail and categorize models based on how temporal information is incorporated. We also discuss large-scale dynamic GNNs and pre-training techniques. Although dynamic GNNs have shown superior performance, challenges remain in scalability, handling heterogeneous information, and lack of diverse graph datasets. The paper also discusses possible future directions, such as adaptive and memory-enhanced models, inductive learning, and theoretical analysis.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングおよび学習するための強力なツールとして、多数のドメインにまたがるアプリケーションとして登場した。
しかし、ほとんどの研究は静的グラフに焦点を当てており、時間とともにトポロジや属性が進化する現実世界のネットワークの動的な性質を無視している。
シーケンスモデリングモジュールを従来のGNNアーキテクチャに統合することにより、動的GNNはこのギャップを埋めることを目指しており、複雑なネットワークのより正確な描写のために動的グラフ固有の時間的依存関係をキャプチャする。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
メインストリームの動的GNNモデルを詳細に提示し、時間情報がどのように組み込まれているかに基づいてモデルを分類する。
また,大規模動的GNNと事前学習技術についても論じる。
動的GNNは優れたパフォーマンスを示しているが、スケーラビリティ、異種情報処理、多様なグラフデータセットの欠如といった課題が残っている。
また,適応モデルやメモリ拡張モデル,帰納学習,理論的解析など,将来的な方向性についても論じる。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks(DGN)は、構造化情報の処理と学習が可能なディープラーニングモデルのファミリとして登場した。
この論文は、静的グラフと動的グラフのためのDGNの内部の情報伝達のダイナミクスを考察し、動的システムとしての設計に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-14T12:55:51Z) - DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
離散時間動的グラフ(DTDG)の表現学習は、時間的に変化するエンティティとその進化する接続のダイナミクスをモデル化するために広く応用されている。
本稿では,従来の GNN+RNN フレームワークから Transformer ベースのアーキテクチャへ移行した DTDG のための表現学習手法 DTFormer を提案する。
論文 参考訳(メタデータ) (2024-07-26T05:46:23Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
我々は,動的グラフニューラルネットワーク(GNN)を高速に説明するための新しいアプローチであるDyExplainerを提案する。
DyExplainerは動的なGNNバックボーンをトレーニングし、各スナップショットでグラフの表現を抽出する。
また,事前指導型正規化を実現するために,コントラスト学習技術によるアプローチも強化する。
論文 参考訳(メタデータ) (2023-10-25T05:26:33Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Explaining Dynamic Graph Neural Networks via Relevance Back-propagation [8.035521056416242]
グラフニューラルネットワーク(GNN)は、グラフ構造化データにおいて、豊富な情報を捕捉する際、顕著な効果を示した。
GNNのブラックボックスの性質は、モデルの理解と信頼を妨げるため、アプリケーションに困難をもたらす。
本稿ではDGExplainerを提案し,動的GNNの信頼性について説明する。
論文 参考訳(メタデータ) (2022-07-22T16:20:34Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。