論文の概要: Decorrelated Variable Importance
- arxiv url: http://arxiv.org/abs/2111.10853v1
- Date: Sun, 21 Nov 2021 16:31:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 06:43:33.565785
- Title: Decorrelated Variable Importance
- Title(参考訳): デコル関連変数の重要性
- Authors: Isabella Verdinelli and Larry Wasserman
- Abstract要約: LOCOの修正版を定義し,相関効果を緩和する手法を提案する。
このパラメータは非パラメトリック推定が難しいが,半パラメトリックモデルを用いて推定する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Because of the widespread use of black box prediction methods such as random
forests and neural nets, there is renewed interest in developing methods for
quantifying variable importance as part of the broader goal of interpretable
prediction. A popular approach is to define a variable importance parameter -
known as LOCO (Leave Out COvariates) - based on dropping covariates from a
regression model. This is essentially a nonparametric version of R-squared.
This parameter is very general and can be estimated nonparametrically, but it
can be hard to interpret because it is affected by correlation between
covariates. We propose a method for mitigating the effect of correlation by
defining a modified version of LOCO. This new parameter is difficult to
estimate nonparametrically, but we show how to estimate it using semiparametric
models.
- Abstract(参考訳): ランダムフォレストやニューラルネットなどのブラックボックス予測手法が広く使われているため、解釈可能な予測という広範な目標の一環として、変数の重要性を定量化する手法の開発が新たに注目されている。
一般的なアプローチは、回帰モデルから共変数を落としてLOCO(Leave Out Covariates)として知られる変数重要パラメータを定義することである。
これは本質的にR-二乗の非パラメトリック版である。
このパラメータは非常に一般的であり、非パラメトリックに推定できるが、共変量間の相関に影響されるため、解釈が難しい。
本稿では,locoの修正版を定義することで相関効果を緩和する手法を提案する。
この新しいパラメータは非パラメトリックな推定が難しいが,半パラメトリックモデルを用いて推定する方法を示す。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Challenges in Variable Importance Ranking Under Correlation [6.718144470265263]
本稿では,特徴相関が変数重要度評価に与える影響を総合シミュレーションで検討する。
ノックオフ変数と対応する予測変数の間には相関関係は常に存在しないが、相関関係が予測変数間の特定の相関しきい値を超えて線形に増加することを証明している。
論文 参考訳(メタデータ) (2024-02-05T19:02:13Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
奥行き回帰は、予測分布の平均と共分散を負の対数類似度を用いて共同最適化する。
近年の研究では, 共分散推定に伴う課題により, 準最適収束が生じる可能性が示唆されている。
1)予測共分散は予測平均のランダム性を真に捉えているか?
その結果, TICは共分散を正確に学習するだけでなく, 負の対数類似性の収束性の向上も促進することがわかった。
論文 参考訳(メタデータ) (2023-10-29T09:54:03Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
回帰モデルにおける双方向相互作用項によく適応する推定器を開発する。
我々は,選択戦略では難しい推論モデルの可能性を評価する。
私たちのモデルは、かなり大きなサンプルサイズであっても、ランダムな森林のような、より高度な機械学習者に対して非常に競争力があります。
論文 参考訳(メタデータ) (2023-09-25T10:03:39Z) - Exploring Local Explanations of Nonlinear Models Using Animated Linear
Projections [5.524804393257921]
eXplainable AI(XAI)を使用して、モデルが予測器を使用して予測に到達する方法を示す。
予測器間の相互作用が変数重要度推定にどのように影響するかを理解するために,LVAを線形射影に変換することができる。
このアプローチは、分類学的(ペンギン種、チョコレートタイプ)と定量的(靴と足の給与、住宅価格)の応答モデルから例を示します。
論文 参考訳(メタデータ) (2022-05-11T09:11:02Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - A new similarity measure for covariate shift with applications to
nonparametric regression [43.457497490211985]
本研究では,ボールの半径における確率の積分比に基づいて,分布ミスマッチの新たな測定方法を提案する。
最近提案された移動指数の概念と比較すると、この尺度はより鋭い収束率をもたらす。
論文 参考訳(メタデータ) (2022-02-06T19:14:50Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。