論文の概要: Myope Models -- Are face presentation attack detection models
short-sighted?
- arxiv url: http://arxiv.org/abs/2111.11127v1
- Date: Mon, 22 Nov 2021 11:28:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 16:13:55.426642
- Title: Myope Models -- Are face presentation attack detection models
short-sighted?
- Title(参考訳): myope Models -- 顔提示攻撃検出モデルは近視ですか?
- Authors: Pedro C. Neto, Ana F. Sequeira, Jaime S. Cardoso
- Abstract要約: プレゼンテーション攻撃は生体認証システムへの繰り返しの脅威であり、インポスタはこれらのシステムをバイパスしようとする。
本研究は,作物と無作為の顔提示攻撃検出(PAD)モデルの比較研究である。
その結果,画像に背景が存在する場合,その性能は一貫して良好であることがわかった。
- 参考スコア(独自算出の注目度): 3.4376560669160394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Presentation attacks are recurrent threats to biometric systems, where
impostors attempt to bypass these systems. Humans often use background
information as contextual cues for their visual system. Yet, regarding
face-based systems, the background is often discarded, since face presentation
attack detection (PAD) models are mostly trained with face crops. This work
presents a comparative study of face PAD models (including multi-task learning,
adversarial training and dynamic frame selection) in two settings: with and
without crops. The results show that the performance is consistently better
when the background is present in the images. The proposed multi-task
methodology beats the state-of-the-art results on the ROSE-Youtu dataset by a
large margin with an equal error rate of 0.2%. Furthermore, we analyze the
models' predictions with Grad-CAM++ with the aim to investigate to what extent
the models focus on background elements that are known to be useful for human
inspection. From this analysis we can conclude that the background cues are not
relevant across all the attacks. Thus, showing the capability of the model to
leverage the background information only when necessary.
- Abstract(参考訳): プレゼンテーション攻撃は生体認証システムへの繰り返しの脅威であり、インポスタはこれらのシステムをバイパスしようとする。
人間はしばしば背景情報を視覚システムの文脈的手がかりとして利用する。
しかし、顔に基づくシステムでは、顔提示攻撃検出(pad)モデルが顔の作物で訓練されているため、背景が捨てられることが多い。
本研究は,マルチタスク学習,敵対的トレーニング,動的フレーム選択を含む)フェイスパッドモデルの比較研究である。
その結果,画像に背景が存在する場合,性能が常に良好であることがわかった。
提案したマルチタスク手法は,ROSE-Youtuデータセットの最先端結果を0.2%の誤差率で大きなマージンで破る。
さらに,Grad-CAM++を用いてモデルの予測を解析し,人間の検査に有用な背景要素にどの程度フォーカスするかを検討する。
この分析から、すべての攻撃において背景の手がかりは関連性がないと結論付けることができる。
したがって、モデルに必要な場合にのみ、背景情報を活用する能力を示す。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - FACE-AUDITOR: Data Auditing in Facial Recognition Systems [24.082527732931677]
顔画像を扱うスケーラビリティと能力のために、ショットベースの顔認識システムが注目されている。
顔画像の誤使用を防止するために、簡単なアプローチとして、生の顔画像を共有する前に修正する方法がある。
そこで本研究では,FACE-AUDITORの完全ツールキットを提案する。このツールキットは,少数ショットベースの顔認識モデルに問い合わせ,ユーザの顔画像のいずれかがモデルのトレーニングに使用されているかどうかを判断する。
論文 参考訳(メタデータ) (2023-04-05T23:03:54Z) - PoseExaminer: Automated Testing of Out-of-Distribution Robustness in
Human Pose and Shape Estimation [15.432266117706018]
我々は人間のポーズのイメージの多様体を探索するために、きめ細かい方法で制御できるシミュレータを開発した。
本稿では,HPSアルゴリズムを自動診断するPoseExaminerという学習ベースのテスト手法を提案する。
我々のPoseExaminerは、現実のシナリオに関係のある現在の最先端モデルにおいて、様々な制限を発見できることを示す。
論文 参考訳(メタデータ) (2023-03-13T17:58:54Z) - Federated Test-Time Adaptive Face Presentation Attack Detection with
Dual-Phase Privacy Preservation [100.69458267888962]
顔提示攻撃検出(fPAD)は、現代の顔認識パイプラインにおいて重要な役割を果たす。
法的およびプライバシー上の問題により、トレーニングデータ(実際の顔画像と偽画像)は、異なるデータソース間で直接共有することはできない。
本稿では,二相プライバシー保護フレームワークを用いたフェデレーションテスト時間適応顔提示検出を提案する。
論文 参考訳(メタデータ) (2021-10-25T02:51:05Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
画像歪みの存在下での4つの最先端深層顔認識モデルの性能評価を行った。
我々は、画像歪みが、異なるサブグループ間でのモデルの性能ギャップと関係していることを観察した。
論文 参考訳(メタデータ) (2021-08-14T16:49:05Z) - Quantifying and Mitigating Privacy Risks of Contrastive Learning [4.909548818641602]
我々は、会員推定と属性推論のレンズを通して、コントラスト学習の最初のプライバシ分析を行う。
その結果,コントラストモデルではメンバシップ推論攻撃に弱いが,教師付きモデルに比べて属性推論攻撃に弱いことが示唆された。
この状況を改善するため,プライバシ保護型コントラスト学習機構であるTalosを提案する。
論文 参考訳(メタデータ) (2021-02-08T11:38:11Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。