Bridging the reality gap in quantum devices with physics-aware machine
learning
- URL: http://arxiv.org/abs/2111.11285v1
- Date: Mon, 22 Nov 2021 15:45:01 GMT
- Title: Bridging the reality gap in quantum devices with physics-aware machine
learning
- Authors: D.L. Craig, H. Moon, F. Fedele, D.T. Lennon, B. Van Straaten, F.
Vigneau, L.C. Camenzind, D.M. Zumb\"uhl, G.A.D. Briggs, M.A. Osborne, D.
Sejdinovic, and N. Ares
- Abstract summary: Disorder induced by the unpredictable distribution of material defects is one of the major contributions to the reality gap.
We bridge this gap using an approach combining a physical model, deep learning, Gaussian random field, and Bayesian inference.
This approach has enabled us to infer the disorder potential of a nanoscale electronic device from electron transport data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discrepancies between reality and simulation impede the optimisation and
scalability of solid-state quantum devices. Disorder induced by the
unpredictable distribution of material defects is one of the major
contributions to the reality gap. We bridge this gap using physics-aware
machine learning, in particular, using an approach combining a physical model,
deep learning, Gaussian random field, and Bayesian inference. This approach has
enabled us to infer the disorder potential of a nanoscale electronic device
from electron transport data. This inference is validated by verifying the
algorithm's predictions about the gate voltage values required for a
laterally-defined quantum dot device in AlGaAs/GaAs to produce current features
corresponding to a double quantum dot regime.
Related papers
- Quantumness of electron transport in quantum dot devices through Leggett-Garg inequalities: A non-equilibrium Green's function approach [0.0]
We study the non-Markovian dynamics of quantum systems interacting with reservoirs.
Our approach is likely to open up new possibilities of witnessing the quantumness for other quantum many-body systems.
arXiv Detail & Related papers (2024-01-23T05:54:59Z) - Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor [0.0]
We discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD.
We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates.
arXiv Detail & Related papers (2023-12-19T21:36:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Modelling semiconductor spin qubits and their charge noise environment
for quantum gate fidelity estimation [0.9406493726662083]
The spin of an electron confined in semiconductor quantum dots is a promising candidate for quantum bit (qubit) implementations.
We present here a co-modelling framework for double quantum dot (DQD) devices and their charge noise environment.
We find an inverse correlation between quantum gate errors and quantum dot confinement.
arXiv Detail & Related papers (2022-10-10T10:12:54Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Dissipation-engineering of nonreciprocal quantum dot circuits: An
input-output approach [6.211723927647019]
Nonreciprocal effects in nanoelectronic devices offer unique possibilities for manipulating electron transport and engineering quantum electronic circuits.
We provide a general input-output description of nonreciprocal transport in solid-state quantum dot architectures.
We show that a nonreciprocal coupling induces unidirectional electron flow in the resonant transport regime.
arXiv Detail & Related papers (2020-04-11T14:13:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.