Quantumness of electron transport in quantum dot devices through Leggett-Garg inequalities: A non-equilibrium Green's function approach
- URL: http://arxiv.org/abs/2401.12502v3
- Date: Mon, 17 Jun 2024 17:15:57 GMT
- Title: Quantumness of electron transport in quantum dot devices through Leggett-Garg inequalities: A non-equilibrium Green's function approach
- Authors: Thingujam Yaiphalemba Meitei, Saikumar Krithivasan, Arijit Sen, Md Manirul Ali,
- Abstract summary: We study the non-Markovian dynamics of quantum systems interacting with reservoirs.
Our approach is likely to open up new possibilities of witnessing the quantumness for other quantum many-body systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although coherent manipulation of electronic states can be achieved in quantum dot (QD) devices by harnessing nanofabrication tools, it is often hard to fathom the extent to which these nanoelectronic devices can behave quantum mechanically. Witnessing their nonclassical nature would thus remain of paramount importance in the emerging world of quantum technologies, since the coherent dynamics of electronic states plays there a crucial role. Against this backdrop, we resort to the general framework of Leggett-Garg inequalities (LGI) as it allows for distinguishing the classical and quantum transport through nanostructures by way of various two-time correlation functions. Using the local charge detection at two different time, we investigate here theoretically whether any quantum violation of the original LGI exists with varying device configurations and parameters under both Markovian and non-Markovian dynamics. Two-time correlators within LGI are derived in terms of the non-equilibrium Green's functions (NEGFs) by exactly solving the quantum Langevin equations. The present study of non-Markovian dynamics of quantum systems interacting with reservoirs is significant for understanding the relaxation phenomenon in the ultrafast transient regime to especially mimic what happens to high-speed quantum devices. We can potentially capture the effect of finite reservoir correlation time by accounting for level broadening at the electrodes along with non-Markovian memory effects. Furthermore, the large bias restriction is no longer imposed in our calculations so that we can safely consider a finite bias between the electronic reservoirs. Our approach is likely to open up new possibilities of witnessing the quantumness for other quantum many-body systems as well that are driven out of the equilibrium.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Disentangling the Physics of the Attractive Hubbard Model via the
Accessible and Symmetry-Resolved Entanglement Entropies [2.991853491946018]
We show how to compute accessible and symmetry-resolved entanglements for interacting fermion systems.
We apply these tools to study the pairing and charge density waves exhibited in the paradigmatic attractive Hubbard model via entanglement.
arXiv Detail & Related papers (2023-12-18T23:06:19Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Effect of induced transition on the quantum entanglement and coherence
in two-coupled double quantum dots system [0.0]
Double quantum dots (DQDs) appear as a versatile platform for technological breakthroughs in quantum computation and nanotechnology.
This work inspects the thermal entanglement and quantum coherence in two-coupled DODs, where the system is exposed to an external stimulus that induces an electronic transition within each subsystem.
arXiv Detail & Related papers (2022-11-08T22:07:26Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Decoherence Effects Break Reciprocity in Matter Transport [0.0]
We present nanoscale devices in which decoherence, modeled by random quantum jumps, produces fundamentally novel phenomena by interrupting the unitary dynamics of electron wave packets.
In these devices, the inelastic interaction of itinerant electrons with impurities acting as electron trapping centers leads to a novel steady state characterized by partial charge separation between the two leads.
The interface between the quantum and the classical worlds therefore provides a novel transport regime of value for the realization of a new category of mesoscopic electronic devices.
arXiv Detail & Related papers (2019-12-27T00:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.