Anomaly-resistant Graph Neural Networks via Neural Architecture Search
- URL: http://arxiv.org/abs/2111.11406v2
- Date: Tue, 23 Nov 2021 05:48:35 GMT
- Title: Anomaly-resistant Graph Neural Networks via Neural Architecture Search
- Authors: M. Park
- Abstract summary: We present an algorithm that recognizes abnormal nodes and automatically excludes them from information aggregation.
Experiments on various real worlds datasets show that our proposed Neural Architecture Search-based Anomaly Resistance Graph Neural Network (NASAR-GNN) is actually effective.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In general, Graph Neural Networks(GNN) have been using a message passing
method to aggregate and summarize information about neighbors to express their
information. Nonetheless, previous studies have shown that the performance of
graph neural networks becomes vulnerable when there are abnormal nodes in the
neighborhood due to this message passing method. In this paper, inspired by the
Neural Architecture Search method, we present an algorithm that recognizes
abnormal nodes and automatically excludes them from information aggregation.
Experiments on various real worlds datasets show that our proposed Neural
Architecture Search-based Anomaly Resistance Graph Neural Network (NASAR-GNN)
is actually effective.
Related papers
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Spatio-Temporal Graph Neural Networks: A Survey [1.9087335681007478]
Temporal Graph Neural Networks are extension of Graph Neural Networks that takes the time factor into account.
This survey discusses interesting topics related to Spatio temporal Graph Neural Networks, including algorithms, application, and open challenges.
arXiv Detail & Related papers (2023-01-25T13:17:46Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection.
GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning.
We present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process.
arXiv Detail & Related papers (2022-07-14T10:59:39Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data.
We propose to enhance information propagation among GNN layers by combining heterogeneous aggregations.
We empirically validate the effectiveness of HAG-Net on a number of graph classification benchmarks.
arXiv Detail & Related papers (2021-02-08T08:57:56Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Simplifying Architecture Search for Graph Neural Network [38.45540097927176]
We propose SNAG framework, consisting of a novel search space and a reinforcement learning based search algorithm.
Experiments on real-world datasets demonstrate the effectiveness of SNAG framework compared to human-designed GNNs and NAS methods.
arXiv Detail & Related papers (2020-08-26T16:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.