論文の概要: Inducing Functions through Reinforcement Learning without Task
Specification
- arxiv url: http://arxiv.org/abs/2111.11647v1
- Date: Tue, 23 Nov 2021 04:42:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 14:34:37.771670
- Title: Inducing Functions through Reinforcement Learning without Task
Specification
- Title(参考訳): タスク仕様のない強化学習による関数の誘導
- Authors: Junmo Cho, Dong-Hwan Lee, Young-Gyu Yoon
- Abstract要約: 本稿では,ネットワーク内の高次機能を誘導する強化学習を通じて,ニューラルネットワークをトレーニングするためのバイオインスパイアされたフレームワークについて報告する。
実験結果から,画像分類や隠れ変数推定などの高次関数は,事前学習や特定を行うことなく,自然かつ同時に生成できることが示唆された。
- 参考スコア(独自算出の注目度): 5.8010446129208155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report a bio-inspired framework for training a neural network through
reinforcement learning to induce high level functions within the network. Based
on the interpretation that animals have gained their cognitive functions such
as object recognition - without ever being specifically trained for - as a
result of maximizing their fitness to the environment, we place our agent in an
environment where developing certain functions may facilitate decision making.
The experimental results show that high level functions, such as image
classification and hidden variable estimation, can be naturally and
simultaneously induced without any pre-training or specifying them.
- Abstract(参考訳): 本稿では,強化学習を通じてニューラルネットワークを訓練し,ネットワーク内の高レベル機能を誘導する,バイオインスパイアされたフレームワークについて報告する。
動物が物体認識(特に訓練を受けることなく)のような認知機能を得たという解釈に基づいて、環境への適合度を最大化することで、特定の機能の開発が意思決定を促進できる環境にエージェントを配置します。
実験の結果,画像分類や隠れ変数推定などの高レベル関数は,事前学習や指定を行わずに自然に同時に誘導できることがわかった。
関連論文リスト
- Adaptive Language-Guided Abstraction from Contrastive Explanations [53.48583372522492]
報酬を計算するためにこれらの特徴をどのように使うべきかを決定する前に、環境のどの特徴が関係しているかを決定する必要がある。
連立特徴と報奨学習のためのエンドツーエンドの手法は、しばしば、刺激的な状態特徴に敏感な脆い報酬関数をもたらす。
本稿では,言語モデルを用いて人間に意味のある特徴を反復的に識別するALGAEという手法について述べる。
論文 参考訳(メタデータ) (2024-09-12T16:51:58Z) - Adaptive Activation Functions for Predictive Modeling with Sparse
Experimental Data [2.012425476229879]
本研究では,適応的あるいは訓練可能なアクティベーション関数が,限られたデータ可用性を特徴とする設定における分類精度と予測不確実性に与える影響について検討した。
本研究は,個別の訓練可能なパラメータを持つ指数線形ユニット(ELU)やソフトプラスなどの適応活性化関数が正確かつ確実な予測モデルをもたらすことを示す。
論文 参考訳(メタデータ) (2024-02-08T04:35:09Z) - Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - Functional Connectome: Approximating Brain Networks with Artificial
Neural Networks [1.952097552284465]
訓練されたディープニューラルネットワークは、合成生物学的ネットワークによって実行される計算を高精度に捉えることができることを示す。
訓練されたディープニューラルネットワークは、新しい環境でゼロショットの一般化を実行可能であることを示す。
本研究は, システム神経科学における新規かつ有望な方向性を明らかにする。
論文 参考訳(メタデータ) (2022-11-23T13:12:13Z) - SHELS: Exclusive Feature Sets for Novelty Detection and Continual
Learning Without Class Boundaries [22.04165296584446]
Sparse High-Exclusive, Low-level-Shared feature representation (SHELS)を導入する。
SHELSは、ハイレベルな特徴の排他的セットと、必須で共有された低レベルな特徴の学習を促進する。
新規性検出にSHELSを用いることで,最先端のOOD検出法よりも統計的に有意な改善が得られた。
論文 参考訳(メタデータ) (2022-06-28T03:09:55Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Sparsely ensembled convolutional neural network classifiers via
reinforcement learning [0.0]
畳み込みニューラルネットワーク(CNN)は,最小動作原理にインスパイアされた目的関数で学習する。
我々はエージェントに事前学習した分類器の集合を通してイメージを知覚するように教え、その結果、動的に構成されたシステムに計算グラフを展開させたい。
実験の結果,エージェントが計算の動的(および文脈に依存した)構造を利用すると,従来のアンサンブル学習よりも優れることがわかった。
論文 参考訳(メタデータ) (2021-02-07T21:26:57Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
各種タスクにおける他のベースラインよりも優れた性能を示すための2つの新しいマルチスパイク学習ルールを提案する。
特徴検出タスクでは、教師なしSTDPの能力と、その制限を提示する能力を再検討する。
提案した学習ルールは,特定の制約を適用せずに,幅広い条件で確実にタスクを解くことができる。
論文 参考訳(メタデータ) (2020-05-02T06:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。