論文の概要: Smoothing the Generative Latent Space with Mixup-based Distance Learning
- arxiv url: http://arxiv.org/abs/2111.11672v1
- Date: Tue, 23 Nov 2021 06:39:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 14:56:37.916309
- Title: Smoothing the Generative Latent Space with Mixup-based Distance Learning
- Title(参考訳): 混合型距離学習による生成潜在空間の平滑化
- Authors: Chaerin Kong, Jeesoo Kim, Donghoon Han and Nojun Kwak
- Abstract要約: 我々は、我々の関心の大規模なデータセットも、転送可能なソースデータセットも利用できない状況を考える。
本稿では,ジェネレータとディスクリミネータの両方の特徴空間における遅延混合に基づく距離正規化を提案する。
- 参考スコア(独自算出の注目度): 32.838539968751924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Producing diverse and realistic images with generative models such as GANs
typically requires large scale training with vast amount of images. GANs
trained with extremely limited data can easily overfit to few training samples
and display undesirable properties like "stairlike" latent space where
transitions in latent space suffer from discontinuity, occasionally yielding
abrupt changes in outputs. In this work, we consider the situation where
neither large scale dataset of our interest nor transferable source dataset is
available, and seek to train existing generative models with minimal
overfitting and mode collapse. We propose latent mixup-based distance
regularization on the feature space of both a generator and the counterpart
discriminator that encourages the two players to reason not only about the
scarce observed data points but the relative distances in the feature space
they reside. Qualitative and quantitative evaluation on diverse datasets
demonstrates that our method is generally applicable to existing models to
enhance both fidelity and diversity under the constraint of limited data. Code
will be made public.
- Abstract(参考訳): GANのような生成モデルで多彩で現実的な画像を生成するには、通常大量の画像で大規模なトレーニングが必要となる。
極めて限られたデータで訓練されたGANは、少数のトレーニングサンプルに容易に適合し、遅延空間の遷移が不連続に悩まされ、時には出力の急激な変化をもたらす「階段のような」潜在空間のような望ましくない特性を示す。
本研究では,関心のある大規模データセットも転送可能なソースデータセットも利用できない状況を検討し,最小限のオーバーフィッティングとモードの崩壊で既存の生成モデルのトレーニングを試みる。
そこで本研究では,2人のプレーヤが観測したデータポイントの不足だけでなく,相対的な距離を判断することを促すために,ジェネレータと識別器の双方の特徴空間上での潜在ミックスアップに基づく距離正規化を提案する。
多様なデータセットの質的、定量的評価は、本手法が既存のモデルに適用され、限られたデータの制約の下で忠実性と多様性を高めることを証明している。
コードは公開されます。
関連論文リスト
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - Variational latent discrete representation for time series modelling [0.0]
我々は、離散状態がマルコフ連鎖である潜在データモデルを導入し、高速なエンドツーエンドトレーニングを可能にした。
生成モデルの性能は,ビル管理データセットと一般公開されているElectricity Transformerデータセットに基づいて評価する。
論文 参考訳(メタデータ) (2023-06-27T08:15:05Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
既存のソリューションは通常、新しい設定への一般化性能の低下に悩まされる。
マルチビューヒューマンメッシュリカバリのためのシミュレーションに基づく新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-12-10T06:28:29Z) - Latent Space is Feature Space: Regularization Term for GANs Training on
Limited Dataset [1.8634083978855898]
LFMと呼ばれるGANの付加的な構造と損失関数を提案し、潜在空間の異なる次元間の特徴の多様性を最大化するよう訓練した。
実験では、このシステムはDCGAN上に構築されており、CelebAデータセットのスクラッチからFrechet Inception Distance(FID)トレーニングを改善することが証明されている。
論文 参考訳(メタデータ) (2022-10-28T16:34:48Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - Few Shot Generative Model Adaption via Relaxed Spatial Structural
Alignment [130.84010267004803]
限られたデータでGAN(Generative Adversarial Network)を訓練することは難しい課題である。
実現可能な解決策は、大規模なソースドメインで十分に訓練されたGANから始め、ターゲットドメインにいくつかのサンプルで適応することである。
本研究では,適応時の対象生成モデルのキャリブレーションを行うための緩和された空間構造アライメント手法を提案する。
論文 参考訳(メタデータ) (2022-03-06T14:26:25Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
そこで我々はDP-Sinkhornを提案する。DP-Sinkhornは個人データからデータ分布を差分プライバシで学習するための新しいトランスポートベース生成手法である。
差分的にプライベートな生成モデルを訓練するための既存のアプローチとは異なり、我々は敵の目的に頼らない。
論文 参考訳(メタデータ) (2021-11-01T18:10:21Z) - Flow Based Models For Manifold Data [11.344428134774475]
フローベース生成モデルは一般に、観測空間と同一の次元を持つ潜在空間を定義する。
多くの問題において、データはそれらが常駐する全周囲データ空間を浮き彫りにせず、むしろ低次元多様体である。
サンプル生成と表現品質の両方に利益をもたらす多様体を事前に学習することを提案する。
論文 参考訳(メタデータ) (2021-09-29T06:48:01Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。