論文の概要: Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models
- arxiv url: http://arxiv.org/abs/2412.17993v1
- Date: Mon, 23 Dec 2024 21:27:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:52.639762
- Title: Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models
- Title(参考訳): 射影拡散モデルを用いた連続空間におけるマルチエージェント経路探索
- Authors: Jinhao Liang, Jacob K. Christopher, Sven Koenig, Ferdinando Fioretto,
- Abstract要約: MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題である。
連続空間におけるMAPFの拡散モデルと制約付き最適化を統合する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 57.45019514036948
- License:
- Abstract: Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics, requiring the computation of collision-free paths for multiple agents moving from their respective start to goal positions. Coordinating multiple agents in a shared environment poses significant challenges, especially in continuous spaces where traditional optimization algorithms struggle with scalability. Moreover, these algorithms often depend on discretized representations of the environment, which can be impractical in image-based or high-dimensional settings. Recently, diffusion models have shown promise in single-agent path planning, capturing complex trajectory distributions and generating smooth paths that navigate continuous, high-dimensional spaces. However, directly extending diffusion models to MAPF introduces new challenges since these models struggle to ensure constraint feasibility, such as inter-agent collision avoidance. To overcome this limitation, this work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces. This unique combination directly produces feasible multi-agent trajectories that respect collision avoidance and kinematic constraints. The effectiveness of our approach is demonstrated across various challenging simulated scenarios of varying dimensionality.
- Abstract(参考訳): MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題であり、各開始点からゴール位置へ移動する複数のエージェントに対して、衝突のない経路の計算を必要とする。
共有環境で複数のエージェントをコーディネートすることは、特に従来の最適化アルゴリズムがスケーラビリティに苦しむ連続したスペースにおいて、大きな課題となる。
さらに、これらのアルゴリズムは、画像ベースや高次元の設定において非現実的な環境の離散化表現に依存することが多い。
近年, 拡散モデルでは, 単一エージェント経路の計画, 複雑な軌道分布の捕捉, 連続した高次元空間をナビゲートする滑らかな経路の生成が期待できる。
しかしながら, MAPF への拡散モデル直接拡張は, エージェント間衝突回避などの制約の実現性確保に苦慮しているため, 新たな課題をもたらす。
この制限を克服するため、連続空間におけるMAPFの拡散モデルに制約付き最適化を統合する新しい手法を提案する。
このユニークな組み合わせは、衝突回避と運動的制約を尊重する実現可能なマルチエージェント軌道を直接生成する。
本手法の有効性は, 異なる次元の様々な難解なシミュレートシナリオにまたがって実証される。
関連論文リスト
- Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Go With the Flow: Fast Diffusion for Gaussian Mixture Models [13.03355083378673]
Schr"odinger Bridges (SB) は、適切なコスト関数を最小化しながら、有限時間で与えられた初期分布を他の最終状態に分配する拡散過程である。
本稿では,ある分布から別の分布へシステムをステアリングするための一組のSBポリシーの潜在メトリゼーションを提案する。
オートエンコーダの空間における画像から画像への変換のような低次元問題におけるこのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-12-12T08:40:22Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences [20.879194337982803]
MAPF(Multi-Agent Path-Finding)アルゴリズムは、離散的な2Dドメインで保証され、厳密な保証を提供する。
本稿では,その反復的かつ漸進的な性質を活用して,競合に基づく探索アルゴリズムを高速化する手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T20:31:07Z) - Few Shot Generative Model Adaption via Relaxed Spatial Structural
Alignment [130.84010267004803]
限られたデータでGAN(Generative Adversarial Network)を訓練することは難しい課題である。
実現可能な解決策は、大規模なソースドメインで十分に訓練されたGANから始め、ターゲットドメインにいくつかのサンプルで適応することである。
本研究では,適応時の対象生成モデルのキャリブレーションを行うための緩和された空間構造アライメント手法を提案する。
論文 参考訳(メタデータ) (2022-03-06T14:26:25Z) - A Bayesian Multiscale Deep Learning Framework for Flows in Random Media [0.0]
マルチスケール偏微分方程式(PDE)によって制御される複雑なシステムの微細スケールシミュレーションは計算コストが高く,そのような問題に対処する様々なマルチスケール手法が開発されている。
本研究では,学習データに制限のあるマルチスケールPDEのためのハイブリッドディープラーニングとマルチスケールアプローチを提案する。
実演目的では,多孔質メディアフローの問題に焦点をあてる。
画像から画像への教師あり深層学習モデルを用いて,入力透過性場とマルチスケール基底関数のマッピングを学習する。
論文 参考訳(メタデータ) (2021-03-08T23:11:46Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
道路交差点において,信号機や信号機を使わずに複数の非通信的合理的エージェント間の分散ナビゲーションに着目した。
我々の重要な洞察は、交差点の幾何学的構造と、効率的に動くエージェントのインセンティブが衝突を避け(合理性)、起こりうる行動の空間を減少させるということである。
マルチエージェント交差点シーンにおける高次モードの軌道表現を再構成するデータ駆動型軌道予測機構であるMTPを設計する。
論文 参考訳(メタデータ) (2020-11-08T02:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。