Uncertainty estimation under model misspecification in neural network
regression
- URL: http://arxiv.org/abs/2111.11763v1
- Date: Tue, 23 Nov 2021 10:18:41 GMT
- Title: Uncertainty estimation under model misspecification in neural network
regression
- Authors: Maria R. Cervera, Rafael D\"atwyler, Francesco D'Angelo, Hamza Keurti,
Benjamin F. Grewe, Christian Henning
- Abstract summary: We study the effect of the model choice on uncertainty estimation.
We highlight that under model misspecification, aleatoric uncertainty is not properly captured.
- Score: 3.2622301272834524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although neural networks are powerful function approximators, the underlying
modelling assumptions ultimately define the likelihood and thus the hypothesis
class they are parameterizing. In classification, these assumptions are minimal
as the commonly employed softmax is capable of representing any categorical
distribution. In regression, however, restrictive assumptions on the type of
continuous distribution to be realized are typically placed, like the dominant
choice of training via mean-squared error and its underlying Gaussianity
assumption. Recently, modelling advances allow to be agnostic to the type of
continuous distribution to be modelled, granting regression the flexibility of
classification models. While past studies stress the benefit of such flexible
regression models in terms of performance, here we study the effect of the
model choice on uncertainty estimation. We highlight that under model
misspecification, aleatoric uncertainty is not properly captured, and that a
Bayesian treatment of a misspecified model leads to unreliable epistemic
uncertainty estimates. Overall, our study provides an overview on how modelling
choices in regression may influence uncertainty estimation and thus any
downstream decision making process.
Related papers
- Conformalized Selective Regression [2.3964255330849356]
We propose a novel approach to selective regression by leveraging conformal prediction.
We show how our proposed approach, conformalized selective regression, demonstrates an advantage over multiple state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-26T04:43:50Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Deep Evidential Learning for Bayesian Quantile Regression [3.6294895527930504]
It is desirable to have accurate uncertainty estimation from a single deterministic forward-pass model.
This paper proposes a deep Bayesian quantile regression model that can estimate the quantiles of a continuous target distribution without the Gaussian assumption.
arXiv Detail & Related papers (2023-08-21T11:42:16Z) - Performative Prediction with Neural Networks [24.880495520422]
performative prediction is a framework for learning models that influence the data they intend to predict.
Standard convergence results for finding a performatively stable classifier with the method of repeated risk minimization assume that the data distribution is Lipschitz continuous to the model's parameters.
In this work, we instead assume that the data distribution is Lipschitz continuous with respect to the model's predictions, a more natural assumption for performative systems.
arXiv Detail & Related papers (2023-04-14T01:12:48Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.