Realistic simulation of users for IT systems in cyber ranges
- URL: http://arxiv.org/abs/2111.11785v1
- Date: Tue, 23 Nov 2021 10:53:29 GMT
- Title: Realistic simulation of users for IT systems in cyber ranges
- Authors: Alexandre Dey (IRISA), Benjamin Cost\'e, \'Eric Totel, Adrien B\'ecue
- Abstract summary: We instrument each machine by means of an external agent to generate user activity.
This agent combines both deterministic and deep learning based methods to adapt to different environment.
We also propose conditional text generation models to facilitate the creation of conversations and documents.
- Score: 63.20765930558542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating user activity is a key capability for both evaluating security
monitoring tools as well as improving the credibility of attacker analysis
platforms (e.g., honeynets). In this paper, to generate this activity, we
instrument each machine by means of an external agent. This agent combines both
deterministic and deep learning based methods to adapt to different environment
(e.g., multiple OS, software versions, etc.), while maintaining high
performances. We also propose conditional text generation models to facilitate
the creation of conversations and documents to accelerate the definition of
coherent, system-wide, life scenarios.
Related papers
- Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
We introduce asynchronous AI agents capable of parallel processing and real-time tool-use.
Our key contribution is an event-driven finite-state machine architecture for agent execution and prompting.
This work presents both a conceptual framework and practical tools for creating AI agents capable of fluid, multitasking interactions.
arXiv Detail & Related papers (2024-10-28T23:57:19Z) - Coherence-Driven Multimodal Safety Dialogue with Active Learning for Embodied Agents [23.960719833886984]
M-CoDAL is a multimodal-dialogue system specifically designed for embodied agents to better understand and communicate in safety-critical situations.
Our approach is evaluated using a newly created multimodal dataset comprising 1K safety violations extracted from 2K Reddit images.
Results with this dataset demonstrate that our approach improves resolution of safety situations, user sentiment, as well as safety of the conversation.
arXiv Detail & Related papers (2024-10-18T03:26:06Z) - Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
We present Agent S, an open agentic framework that enables autonomous interaction with computers through a Graphical User Interface (GUI)
Agent S aims to address three key challenges in automating computer tasks: acquiring domain-specific knowledge, planning over long task horizons, and handling dynamic, non-uniform interfaces.
arXiv Detail & Related papers (2024-10-10T17:43:51Z) - LLM Honeypot: Leveraging Large Language Models as Advanced Interactive Honeypot Systems [0.0]
Honeypots are decoy systems designed to lure and interact with attackers.
We present a novel approach to creating realistic and interactive honeypot systems using Large Language Models.
arXiv Detail & Related papers (2024-09-12T17:33:06Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Benchmarking Mobile Device Control Agents across Diverse Configurations [19.01954948183538]
B-MoCA is a benchmark for evaluating and developing mobile device control agents.
We benchmark diverse agents, including agents employing large language models (LLMs) or multi-modal LLMs.
While these agents demonstrate proficiency in executing straightforward tasks, their poor performance on complex tasks highlights significant opportunities for future research to improve effectiveness.
arXiv Detail & Related papers (2024-04-25T14:56:32Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios [58.62407014256686]
RealGen is a novel retrieval-based in-context learning framework for traffic scenario generation.
RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way.
This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios.
arXiv Detail & Related papers (2023-12-19T23:11:06Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.