State and Memory is All You Need for Robust and Reliable AI Agents
- URL: http://arxiv.org/abs/2507.00081v1
- Date: Mon, 30 Jun 2025 02:02:35 GMT
- Title: State and Memory is All You Need for Robust and Reliable AI Agents
- Authors: Matthew Muhoberac, Atharva Parikh, Nirvi Vakharia, Saniya Virani, Aco Radujevic, Savannah Wood, Meghav Verma, Dimitri Metaxotos, Jeyaraman Soundararajan, Thierry Masquelin, Alexander G. Godfrey, Sean Gardner, Dobrila Rudnicki, Sam Michael, Gaurav Chopra,
- Abstract summary: Large language models (LLMs) have enabled powerful advances in natural language understanding and generation.<n>Yet their application to complex, real-world scientific remain limited by challenges in memory, planning, and tool integration.<n>Here, we introduce SciBORG, a modular agentic framework that allows LLM-based agents to autonomously plan, reason, and achieve robust and reliable domain-specific task execution.
- Score: 29.259008600842517
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have enabled powerful advances in natural language understanding and generation. Yet their application to complex, real-world scientific workflows remain limited by challenges in memory, planning, and tool integration. Here, we introduce SciBORG (Scientific Bespoke Artificial Intelligence Agents Optimized for Research Goals), a modular agentic framework that allows LLM-based agents to autonomously plan, reason, and achieve robust and reliable domain-specific task execution. Agents are constructed dynamically from source code documentation and augmented with finite-state automata (FSA) memory, enabling persistent state tracking and context-aware decision-making. This approach eliminates the need for manual prompt engineering and allows for robust, scalable deployment across diverse applications via maintaining context across extended workflows and to recover from tool or execution failures. We validate SciBORG through integration with both physical and virtual hardware, such as microwave synthesizers for executing user-specified reactions, with context-aware decision making and demonstrate its use in autonomous multi-step bioassay retrieval from the PubChem database utilizing multi-step planning, reasoning, agent-to-agent communication and coordination for execution of exploratory tasks. Systematic benchmarking shows that SciBORG agents achieve reliable execution, adaptive planning, and interpretable state transitions. Our results show that memory and state awareness are critical enablers of agentic planning and reliability, offering a generalizable foundation for deploying AI agents in complex environments.
Related papers
- VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots [44.99833362998488]
We propose an architecture for automatically verifying high-level task plans before their execution in simulator or real-world environments.<n>The module uses the reasoning capabilities of the Large Language Models to evaluate logical coherence and identify potential gaps in the plan.<n>We contribute to improving the reliability and efficiency of task planning and addresses the critical need for robust pre-execution verification in autonomous systems.
arXiv Detail & Related papers (2025-07-07T15:31:36Z) - ThinkGeo: Evaluating Tool-Augmented Agents for Remote Sensing Tasks [54.52092001110694]
ThinkGeo is a benchmark designed to evaluate tool-augmented agents on remote sensing tasks via structured tool use and multi-step planning.<n>Inspired by tool-interaction paradigms, ThinkGeo includes human-curated queries spanning a wide range of real-world applications.<n>Our analysis reveals notable disparities in tool accuracy and planning consistency across models.
arXiv Detail & Related papers (2025-05-29T17:59:38Z) - IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems [2.2810745411557316]
We introduce IntellAgent, a scalable, open-source framework to evaluate conversational AI systems.<n>IntellAgent automates the creation of synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations.<n>Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment.
arXiv Detail & Related papers (2025-01-19T14:58:35Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [112.04307762405669]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.<n>G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
Proactive Agent Planning requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction.
We propose a novel multi-agent framework, Clarification-Execution-Planning (textttCEP), which consists of three agents specialized in clarification, execution, and planning.
arXiv Detail & Related papers (2024-06-18T14:07:28Z) - RS-Agent: Automating Remote Sensing Tasks through Intelligent Agent [15.836845304125436]
RS-Agent is an AI agent designed to interact with human users and autonomously leverage specialized models.<n> RS-Agent integrates four key components: a Central Controller based on large language models, a dynamic toolkit for tool execution, a Solution Space for task-specific expert guidance, and a Knowledge Space for domain-level reasoning.<n>Extensive experiments across 9 datasets and 18 remote sensing tasks demonstrate that RS-Agent significantly outperforms state-of-the-art MLLMs.
arXiv Detail & Related papers (2024-06-11T09:30:02Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Realistic simulation of users for IT systems in cyber ranges [63.20765930558542]
We instrument each machine by means of an external agent to generate user activity.
This agent combines both deterministic and deep learning based methods to adapt to different environment.
We also propose conditional text generation models to facilitate the creation of conversations and documents.
arXiv Detail & Related papers (2021-11-23T10:53:29Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
The paper addresses a modular approach, integrated into the ALOHA tool flow, to support the data preprocessing and transformation pipeline.
To demonstrate the effectiveness of the approach, we present some experimental results related to a keyword spotting use case.
arXiv Detail & Related papers (2021-02-02T06:48:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.