Factored Agents: Decoupling In-Context Learning and Memorization for Robust Tool Use
- URL: http://arxiv.org/abs/2503.22931v2
- Date: Wed, 02 Apr 2025 04:53:06 GMT
- Title: Factored Agents: Decoupling In-Context Learning and Memorization for Robust Tool Use
- Authors: Nicholas Roth, Christopher Hidey, Lucas Spangher, William F. Arnold, Chang Ye, Nick Masiewicki, Jinoo Baek, Peter Grabowski, Eugene Ie,
- Abstract summary: We propose a novel factored agent architecture designed to overcome the limitations of traditional single-agent systems in agentic AI.<n>Our approach decomposes the agent into two specialized components: (1) a large language model that serves as a high level planner and in-context learner, and (2) a smaller language model which acts as a memorizer of tool format and output.<n> Empirical evaluations demonstrate that our factored architecture significantly improves planning accuracy and error resilience, while elucidating the inherent trade-off between in-context learning and static memorization.
- Score: 4.437184840125514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel factored agent architecture designed to overcome the limitations of traditional single-agent systems in agentic AI. Our approach decomposes the agent into two specialized components: (1) a large language model (LLM) that serves as a high level planner and in-context learner, which may use dynamically available information in user prompts, (2) a smaller language model which acts as a memorizer of tool format and output. This decoupling addresses prevalent issues in monolithic designs, including malformed, missing, and hallucinated API fields, as well as suboptimal planning in dynamic environments. Empirical evaluations demonstrate that our factored architecture significantly improves planning accuracy and error resilience, while elucidating the inherent trade-off between in-context learning and static memorization. These findings suggest that a factored approach is a promising pathway for developing more robust and adaptable agentic AI systems.
Related papers
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.
With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.
We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Building Resource-Constrained Language Agents: A Korean Case Study on Chemical Toxicity Information [28.634126758365976]
This paper presents Tox-chat, a Korean chemical toxicity information agent devised within these limitations.<n>We propose two key innovations: a context-efficient architecture that reduces token consumption through hierarchical section search, and a scenario-based dialogue generation methodology.
arXiv Detail & Related papers (2025-03-22T12:34:15Z) - APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
We present an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex structures in Minecraft.
By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints.
Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process.
arXiv Detail & Related papers (2024-11-26T09:31:28Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.<n>CAP intervenes in model activations through constituent-based pooling at various model levels.<n>Our findings highlight fundamental limitations in current transformer architectures regarding compositional semantics processing and model interpretability.
arXiv Detail & Related papers (2024-10-16T18:10:50Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - An In-depth Survey of Large Language Model-based Artificial Intelligence
Agents [11.774961923192478]
We have explored the core differences and characteristics between LLM-based AI agents and traditional AI agents.
We conducted an in-depth analysis of the key components of AI agents, including planning, memory, and tool use.
arXiv Detail & Related papers (2023-09-23T11:25:45Z) - A Framework for Understanding and Visualizing Strategies of RL Agents [0.0]
We present a framework for learning comprehensible models of sequential decision tasks in which agent strategies are characterized using temporal logic formulas.
We evaluate our framework on combat scenarios in StarCraft II (SC2) using traces from a handcrafted expert policy and a trained reinforcement learning agent.
arXiv Detail & Related papers (2022-08-17T21:58:19Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.