Deep Contrastive Multi-view Clustering under Semantic Feature Guidance
- URL: http://arxiv.org/abs/2403.05768v1
- Date: Sat, 9 Mar 2024 02:33:38 GMT
- Title: Deep Contrastive Multi-view Clustering under Semantic Feature Guidance
- Authors: Siwen Liu and Jinyan Liu and Hanning Yuan and Qi Li and Jing Geng and
Ziqiang Yuan and Huaxu Han
- Abstract summary: We propose a multi-view clustering framework named Deep Contrastive Multi-view Clustering under Semantic feature guidance (DCMCS)
By minimizing instance-level contrastive loss weighted by semantic similarity, DCMCS adaptively weakens contrastive leaning between false negative pairs.
Experimental results on several public datasets demonstrate the proposed framework outperforms the state-of-the-art methods.
- Score: 8.055452424643562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning has achieved promising performance in the field of
multi-view clustering recently. However, the positive and negative sample
construction mechanisms ignoring semantic consistency lead to false negative
pairs, limiting the performance of existing algorithms from further
improvement. To solve this problem, we propose a multi-view clustering
framework named Deep Contrastive Multi-view Clustering under Semantic feature
guidance (DCMCS) to alleviate the influence of false negative pairs.
Specifically, view-specific features are firstly extracted from raw features
and fused to obtain fusion view features according to view importance. To
mitigate the interference of view-private information, specific view and fusion
view semantic features are learned by cluster-level contrastive learning and
concatenated to measure the semantic similarity of instances. By minimizing
instance-level contrastive loss weighted by semantic similarity, DCMCS
adaptively weakens contrastive leaning between false negative pairs.
Experimental results on several public datasets demonstrate the proposed
framework outperforms the state-of-the-art methods.
Related papers
- Fast Disentangled Slim Tensor Learning for Multi-view Clustering [28.950845031752927]
We propose a new approach termed fast Disdentangle Slim Learning (DSTL) for multi-view clustering.
To alleviate the negative influence of feature redundancy, inspired by robust PCA, DSTL disentangles the latent low-dimensional representation into a semantic-unrelated part and a semantic-related part for each view.
Our proposed model is computationally efficient and can be solved effectively.
arXiv Detail & Related papers (2024-11-12T09:57:53Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Decoupled Contrastive Multi-View Clustering with High-Order Random Walks [25.03805821839733]
We propose a novel robust method dubbed decoupled contrastive multi-view clustering with high-order random walks (DIVIDE)
In brief, DIVIDE leverages random walks to progressively identify data pairs in a global instead of local manner.
DIVIDE could identify in-neighborhood negatives and out-of-neighborhood positives.
arXiv Detail & Related papers (2023-08-22T03:45:13Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
We propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC)
We first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph.
During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels.
arXiv Detail & Related papers (2023-08-17T14:14:28Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
We propose a deep fusion network to fuse view-specific representations into the view-common representation.
We also design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation.
In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors.
arXiv Detail & Related papers (2022-12-28T07:21:05Z) - Subspace-Contrastive Multi-View Clustering [0.0]
We propose a novel Subspace-Contrastive Multi-View Clustering (SCMC) approach.
We employ view-specific auto-encoders to map the original multi-view data into compact features perceiving its nonlinear structures.
To demonstrate the effectiveness of the proposed model, we conduct a large number of comparative experiments on eight challenge datasets.
arXiv Detail & Related papers (2022-10-13T07:19:37Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Exploring Non-Contrastive Representation Learning for Deep Clustering [23.546602131801205]
Non-contrastive representation learning for deep clustering, termed NCC, is based on BYOL, a representative method without negative examples.
NCC forms an embedding space where all clusters are well-separated and within-cluster examples are compact.
Experimental results on several clustering benchmark datasets including ImageNet-1K demonstrate that NCC outperforms the state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2021-11-23T12:21:53Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.