Simulating strongly interacting Hubbard chains with the Variational
Hamiltonian Ansatz on a quantum computer
- URL: http://arxiv.org/abs/2111.11996v3
- Date: Wed, 23 Feb 2022 10:21:39 GMT
- Title: Simulating strongly interacting Hubbard chains with the Variational
Hamiltonian Ansatz on a quantum computer
- Authors: Baptiste Anselme Martin, Pascal Simon and Marko J. Ran\v{c}i\'c
- Abstract summary: Variational Quantum Eigensolver (VQE) has been implemented to study molecules and condensed matter systems on small size quantum computers.
We try to answer the question: how much of the underlying physics of a 1D Hubbard chain is described by a problem-inspired Variational Hamiltonian Ansatz (VHA) in a broad range of parameter values.
Our findings suggest that even low fidelity solutions capture energy and number of doubly occupied sites well, while spin-spin correlations are not well captured even when the solution is of high fidelity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid quantum-classical algorithms have been proposed to circumvent noise
limitations in quantum computers. Such algorithms delegate only a calculation
of the expectation value to the quantum computer. Among them, the Variational
Quantum Eigensolver (VQE) has been implemented to study molecules and condensed
matter systems on small size quantum computers. Condensed matter systems
described by the Hubbard model exhibit a rich phase diagram alongside exotic
states of matter. In this manuscript, we try to answer the question: how much
of the underlying physics of a 1D Hubbard chain is described by a
problem-inspired Variational Hamiltonian Ansatz (VHA) in a broad range of
parameter values ? We start by probing how much does the solution increases
fidelity with increasing ansatz complexity. Our findings suggest that even low
fidelity solutions capture energy and number of doubly occupied sites well,
while spin-spin correlations are not well captured even when the solution is of
high fidelity. Our powerful simulation platform allows us to incorporate a
realistic noise model and shows a successful implementation of noise-mitigation
strategies - post-selection and the Richardson extrapolation. Finally, we
compare our results with an experimental realization of the algorithm on IBM
Quantum's ibmq_quito device.
Related papers
- Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Variational quantum algorithms for local Hamiltonian problems [0.0]
Variational quantum algorithms (VQAs) are a modern family of quantum algorithms designed to solve optimization problems using a quantum computer.
We primarily focus on the algorithm called variational quantum eigensolver (VQE), which takes a qubit Hamiltonian and returns its approximate ground state.
arXiv Detail & Related papers (2022-08-23T22:32:56Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Simulating a ring-like Hubbard system with a quantum computer [0.0]
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems.
We study a four-site Hubbard ring that exhibits a transition from a product state to an intrinsically interacting ground state as hopping amplitudes are changed.
We locate this transition and solve for the ground state energy with high quantitative accuracy using a variational quantum algorithm executed on an IBM quantum computer.
arXiv Detail & Related papers (2021-04-13T18:08:09Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.