Simulating a ring-like Hubbard system with a quantum computer
- URL: http://arxiv.org/abs/2104.06428v1
- Date: Tue, 13 Apr 2021 18:08:09 GMT
- Title: Simulating a ring-like Hubbard system with a quantum computer
- Authors: Philippe Suchsland, Panagiotis Kl. Barkoutsos, Ivano Tavernelli, Mark
H. Fischer, Titus Neupert
- Abstract summary: We develop a workflow to use current quantum computing hardware for solving quantum many-body problems.
We study a four-site Hubbard ring that exhibits a transition from a product state to an intrinsically interacting ground state as hopping amplitudes are changed.
We locate this transition and solve for the ground state energy with high quantitative accuracy using a variational quantum algorithm executed on an IBM quantum computer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a workflow to use current quantum computing hardware for solving
quantum many-body problems, using the example of the fermionic Hubbard model.
Concretely, we study a four-site Hubbard ring that exhibits a transition from a
product state to an intrinsically interacting ground state as hopping
amplitudes are changed. We locate this transition and solve for the ground
state energy with high quantitative accuracy using a variational quantum
algorithm executed on an IBM quantum computer. Our results are enabled by a
variational ansatz that takes full advantage of the maximal set of commuting
$\mathbb{Z}_2$ symmetries of the problem and a Lanczos-inspired error
mitigation algorithm. They are a benchmark on the way to exploiting near term
quantum simulators for quantum many-body problems.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum simulation of dissipative collective effects on noisy quantum
computers [0.0]
We put forward the first fully quantum simulation of dissipative collective phenomena on a real quantum computer.
The quantum simulation is based on the recently introduced multipartite collision model.
We implement the algorithm on some IBM quantum computers to simulate superradiance and subradiance between a pair of qubits.
arXiv Detail & Related papers (2022-01-27T15:50:58Z) - Orders of magnitude reduction in the computational overhead for quantum
many-body problems on quantum computers via an exact transcorrelated method [0.0]
We show that the Hamiltonian becomes non-Hermitian, posing problems for quantum algorithms based on the variational principle.
We overcome these limitations with the ansatz-based quantum imaginary time evolution algorithm.
Our work paves the way for the use of exact transcorrelated methods for the simulations of ab initio systems on quantum computers.
arXiv Detail & Related papers (2022-01-09T16:37:32Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Simulating strongly interacting Hubbard chains with the Variational
Hamiltonian Ansatz on a quantum computer [0.0]
Variational Quantum Eigensolver (VQE) has been implemented to study molecules and condensed matter systems on small size quantum computers.
We try to answer the question: how much of the underlying physics of a 1D Hubbard chain is described by a problem-inspired Variational Hamiltonian Ansatz (VHA) in a broad range of parameter values.
Our findings suggest that even low fidelity solutions capture energy and number of doubly occupied sites well, while spin-spin correlations are not well captured even when the solution is of high fidelity.
arXiv Detail & Related papers (2021-11-23T16:54:36Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.