Physics Informed Neural Networks for Control Oriented Thermal Modeling
of Buildings
- URL: http://arxiv.org/abs/2111.12066v1
- Date: Tue, 23 Nov 2021 18:27:54 GMT
- Title: Physics Informed Neural Networks for Control Oriented Thermal Modeling
of Buildings
- Authors: Gargya Gokhale, Bert Claessens and Chris Develder
- Abstract summary: This paper presents a data-driven modeling approach for developing control-oriented thermal models of buildings.
Along with measured data and building parameters, we encode the neural networks with the underlying physics that governs the thermal behavior of these buildings.
- Score: 3.1132272756008375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a data-driven modeling approach for developing
control-oriented thermal models of buildings. These models are developed with
the objective of reducing energy consumption costs while controlling the indoor
temperature of the building within required comfort limits. To combine the
interpretability of white/gray box physics models and the expressive power of
neural networks, we propose a physics informed neural network approach for this
modeling task. Along with measured data and building parameters, we encode the
neural networks with the underlying physics that governs the thermal behavior
of these buildings. Thus, realizing a model that is guided by physics, aids in
modeling the temporal evolution of room temperature and power consumption as
well as the hidden state, i.e., the temperature of building thermal mass for
subsequent time steps. The main research contributions of this work are: (1) we
propose two variants of physics informed neural network architectures for the
task of control-oriented thermal modeling of buildings, (2) we show that
training these architectures is data-efficient, requiring less training data
compared to conventional, non-physics informed neural networks, and (3) we show
that these architectures achieve more accurate predictions than conventional
neural networks for longer prediction horizons. We test the prediction
performance of the proposed architectures using simulated and real-word data to
demonstrate (2) and (3) and show that the proposed physics informed neural
network architectures can be used for this control-oriented modeling problem.
Related papers
- Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
This paper systematically analyzes the impact of different design choices on deep-learning-based weather forecasting systems.
We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models.
We propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures.
arXiv Detail & Related papers (2024-10-09T22:25:50Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - An Intelligent End-to-End Neural Architecture Search Framework for Electricity Forecasting Model Development [4.940941112226529]
We propose an intelligent automated architecture search (IAAS) framework for the development of time-series electricity forecasting models.
The proposed framework contains three primary components, i.e., network function-preserving transformation operation, reinforcement learning (RL)-based network transformation control, and network screening.
We demonstrate that the proposed IAAS framework significantly outperforms the ten existing models or methods in terms of forecasting accuracy and stability.
arXiv Detail & Related papers (2022-03-25T10:36:27Z) - Skillful Twelve Hour Precipitation Forecasts using Large Context Neural
Networks [8.086653045816151]
Current operational forecasting models are based on physics and use supercomputers to simulate the atmosphere.
An emerging class of weather models based on neural networks represents a paradigm shift in weather forecasting.
We present a neural network that is capable of large-scale precipitation forecasting up to twelve hours ahead.
arXiv Detail & Related papers (2021-11-14T22:53:04Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
In this paper, we propose a novel physics guided and injected neural network for SAR image classification.
The proposed framework comprises three parts: (1) generating physics guided signals using existing explainable models, (2) learning physics-aware features with physics guided network, and (3) injecting the physics-aware features adaptively to the conventional classification deep learning model for prediction.
The experimental results show that our proposed method substantially improve the classification performance compared with the counterpart data-driven CNN.
arXiv Detail & Related papers (2021-10-27T03:30:18Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - A Sequential Modelling Approach for Indoor Temperature Prediction and
Heating Control in Smart Buildings [4.759925918369102]
This paper proposes a learning-based framework for sequentially applying the data-driven statistical methods to predict indoor temperature.
Experiments demonstrate the effectiveness of the modelling approach and control algorithm, and reveal the promising potential of the mixed data-driven approach in smart building applications.
arXiv Detail & Related papers (2020-09-21T13:20:27Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
We propose a new class of data-driven, physics-based, neural networks for modeling of strain rate independent processes at the material point level.
The two basic principles of thermodynamics are encoded in the network's architecture by taking advantage of automatic differentiation.
We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, with strain hardening and softening strain.
arXiv Detail & Related papers (2020-05-25T15:56:34Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.