論文の概要: Multi-Person 3D Motion Prediction with Multi-Range Transformers
- arxiv url: http://arxiv.org/abs/2111.12073v1
- Date: Tue, 23 Nov 2021 18:41:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-24 15:22:08.382994
- Title: Multi-Person 3D Motion Prediction with Multi-Range Transformers
- Title(参考訳): マルチレンジトランスを用いた多人数3次元運動予測
- Authors: Jiashun Wang, Huazhe Xu, Medhini Narasimhan, Xiaolong Wang
- Abstract要約: 本稿では,個人動作のためのローカルレンジエンコーダと,ソーシャルインタラクションのためのグローバルレンジエンコーダを含むマルチランジトランスフォーマーモデルを提案する。
我々のモデルは、長期3次元動作予測における最先端の手法に勝るだけでなく、多様な社会的相互作用も生み出す。
- 参考スコア(独自算出の注目度): 16.62864429495888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework for multi-person 3D motion trajectory
prediction. Our key observation is that a human's action and behaviors may
highly depend on the other persons around. Thus, instead of predicting each
human pose trajectory in isolation, we introduce a Multi-Range Transformers
model which contains of a local-range encoder for individual motion and a
global-range encoder for social interactions. The Transformer decoder then
performs prediction for each person by taking a corresponding pose as a query
which attends to both local and global-range encoder features. Our model not
only outperforms state-of-the-art methods on long-term 3D motion prediction,
but also generates diverse social interactions. More interestingly, our model
can even predict 15-person motion simultaneously by automatically dividing the
persons into different interaction groups. Project page with code is available
at https://jiashunwang.github.io/MRT/.
- Abstract(参考訳): マルチパーソン3次元運動軌跡予測のための新しいフレームワークを提案する。
私たちのキーとなる観察は、人間の行動や行動は周囲の人間に大きく依存する可能性があるということです。
そこで本稿では,人間のポーズの軌跡を別々に予測する代わりに,個人動作のためのローカルレンジエンコーダと,ソーシャルインタラクションのためのグローバルレンジエンコーダを含むマルチレンジトランスフォーマーモデルを導入する。
次に、トランスデコーダは、ローカルおよびグローバルレンジエンコーダ機能の両方に対応するクエリとして対応するポーズを取ることにより、各人の予測を行う。
我々のモデルは、長期3次元動作予測における最先端の手法を上回るだけでなく、多様な社会的相互作用も生み出す。
さらに興味深いことに、我々のモデルは、人を自動的に異なるインタラクショングループに分割することで、同時に15人の動作を予測することができる。
コード付きプロジェクトページはhttps://jiashunwang.github.io/mrt/。
関連論文リスト
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
マルチトランスモーション(Multi-Transmotion)は、モダリティ事前トレーニング用に設計された革新的なトランスフォーマーベースのモデルである。
提案手法は,下流タスクにおける各種データセット間の競合性能を示す。
論文 参考訳(メタデータ) (2024-11-04T23:15:21Z) - Massively Multi-Person 3D Human Motion Forecasting with Scene Context [13.197408989895102]
本研究では、長期(10秒)の人間の動きを予測するために、シーン認識型ソーシャルトランスフォーマーモデル(SAST)を提案する。
我々は、時間的畳み込みエンコーダ・デコーダアーキテクチャとTransformerベースのボトルネックを組み合わせることで、動きとシーン情報を効率的に組み合わせることができる。
我々のモデルは、さまざまなメトリクスやユーザスタディにおいて、リアリズムや多様性の観点から、他のアプローチよりも優れています。
論文 参考訳(メタデータ) (2024-09-18T17:58:51Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotionは、多種多様な視覚的手がかりを利用して人間の行動を予測する、汎用トランスフォーマーベースのモデルである。
提案手法は,JTA,JRDB,歩行者,道路交通のサイクリスト,ETH-UCYなど,複数のデータセットで検証されている。
論文 参考訳(メタデータ) (2023-12-26T18:56:49Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
関節間の所望距離を維持するために,新しい制御可能な運動生成手法であるInterControlを導入する。
そこで本研究では,既成の大規模言語モデルを用いて,ヒューマンインタラクションのための結合ペア間の距離を生成できることを実証した。
論文 参考訳(メタデータ) (2023-11-27T14:32:33Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - STPOTR: Simultaneous Human Trajectory and Pose Prediction Using a
Non-Autoregressive Transformer for Robot Following Ahead [8.227864212055035]
観測された人間の動作履歴から将来の人間の動作を予測するニューラルネットワークモデルを開発した。
本研究では,自動回帰トランスフォーマアーキテクチャを提案し,その並列特性を利用して,テスト時の高速かつ高精度な予測を行う。
我々のモデルは、最先端の手法に関して、テスト精度と速度の観点からロボット応用に適している。
論文 参考訳(メタデータ) (2022-09-15T20:27:54Z) - DMMGAN: Diverse Multi Motion Prediction of 3D Human Joints using
Attention-Based Generative Adverserial Network [9.247294820004143]
本稿では,多種多様な人間の動きを予測するためのトランスフォーマーに基づく生成モデルを提案する。
本モデルでは、まず、股関節に対する身体の姿勢を予測し、次に、textitHip予測モジュールが、予測された各ポーズフレームに対する股関節運動の軌跡を予測する。
本研究では,ヒトの動作予測において,股関節運動を伴う多動将来の軌跡を予測しながら,最先端の動作予測に優れることを示す。
論文 参考訳(メタデータ) (2022-09-13T23:22:33Z) - SoMoFormer: Multi-Person Pose Forecasting with Transformers [15.617263162155062]
マルチパーソン3Dポーズ予測のためのソーシャルモーショントランスフォーマー(SoMoFormer)を提案する。
我々のトランスアーキテクチャは、人間の動作入力を時系列ではなくジョイントシーケンスとして一意にモデル化する。
この問題の修正により、SoMoFormerは自然に、シーン内のすべての人の関節を入力クエリとして使用することで、マルチパーソンシーンに拡張できることを示す。
論文 参考訳(メタデータ) (2022-08-30T06:59:28Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
動作駆動型人間の動作予測の課題について紹介する。
一連の動作ラベルと短い動作履歴から、複数の可算な将来の動作を予測することを目的としている。
論文 参考訳(メタデータ) (2022-05-31T08:38:07Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
本稿では,多様な動作予測と制御可能な動作予測のための統合された深部生成ネットワークを提案する。
標準ベンチマークデータセットであるHuman3.6MとHumanEva-Iの2つの実験は、我々のアプローチがサンプルの多様性と精度の両方において最先端のベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2021-08-19T00:58:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。