Probing quantum chaos in multipartite systems
- URL: http://arxiv.org/abs/2111.12475v3
- Date: Mon, 22 Aug 2022 01:13:10 GMT
- Title: Probing quantum chaos in multipartite systems
- Authors: Zan Cao, Zhenyu Xu, and Adolfo del Campo
- Abstract summary: We show that the contribution of the subsystems to the global behavior can be revealed by probing the full counting statistics.
We show that signatures of quantum chaos in the time domain dictate a dip-ramp-plateau structure in the characteristic function.
Global quantum chaos can be suppressed at strong coupling.
- Score: 4.771483851099131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the emergence of quantum chaos in multipartite systems is
challenging in the presence of interactions. We show that the contribution of
the subsystems to the global behavior can be revealed by probing the full
counting statistics of the local, total, and interaction energies. As in the
spectral form factor, signatures of quantum chaos in the time domain dictate a
dip-ramp-plateau structure in the characteristic function, i.e., the Fourier
transform of the eigenvalue distribution. With this approach, we explore the
fate of chaos in interacting subsystems that are locally maximally chaotic.
Global quantum chaos can be suppressed at strong coupling, as illustrated with
coupled copies of random-matrix Hamiltonians and of the Sachdev-Ye-Kitaev
model. Our method is amenable to experimental implementation using single-qubit
interferometry.
Related papers
- Signatures of quantum chaos and complexity in the Ising model on random graphs [0.0]
We investigate quantum chaos and complexity in the quantum annealing Ising model on random ErdHos-R'enyi graphs.<n>We study deep thermalization of a quantum state ensemble as an indicator of chaotic dynamics.<n>We also investigate a quantum analogue of the Mpemba effect, where initially "hotter" states can thermalize anomalously fast.
arXiv Detail & Related papers (2025-08-04T18:43:43Z) - Universality of stochastic control of quantum chaos with measurement and feedback [0.0]
We investigate quantum dynamics in an unstable fixed point subjected to control.<n>Recent studies reveal that this interplay underlies a family of measurement- and feedback-driven dynamical quantum phase transitions.<n>By combining numerical simulations, a semiclassical Fokker-Planck analysis, and direct spectra of the quantum channel, we map out the control transition.
arXiv Detail & Related papers (2025-06-11T18:00:01Z) - Experimental Detection of Dissipative Quantum Chaos [9.128377708538647]
We report the first experimental detection of dissipative quantum chaos and integrability.<n>We establish present-day quantum computation platforms as testbeds to explore dissipative many-body phenomena.
arXiv Detail & Related papers (2025-06-04T18:00:03Z) - Weak coupling limit for quantum systems with unbounded weakly commuting system operators [50.24983453990065]
This work is devoted to a rigorous analysis of the weak coupling limit (WCL) for the reduced dynamics of an open infinite-dimensional quantum system interacting with electromagnetic field or a reservoir formed by Fermi or Bose particles.<n>We derive in the weak coupling limit the reservoir statistics, which is determined by whose terms in the multi-point correlation functions of the reservoir are non-zero in the WCL.<n>We prove that the resulting reduced system dynamics converges to unitary dynamics with a modified Hamiltonian which can be interpreted as a Lamb shift to the original Hamiltonian.
arXiv Detail & Related papers (2025-05-13T05:32:34Z) - Quantum Chaos, Randomness and Universal Scaling of Entanglement in Various Krylov Spaces [0.0]
We derive an analytical expression for the time-averaged quantum Fisher information (QFI) that applies to all quantum chaotic systems governed by Dyson's ensembles.
Our approach integrates concepts of randomness, multipartite entanglement and quantum chaos.
arXiv Detail & Related papers (2024-07-16T15:11:20Z) - Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Observation of multiple steady states with engineered dissipation [19.94001756170236]
We introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system.
We find that the information saved in the initial state maintains in the steady state driven by the continuous dissipation on a five-qubit chain.
arXiv Detail & Related papers (2023-08-25T08:06:44Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum chaos in interacting Bose-Bose mixtures [0.0]
We study the emergence of quantum chaos in a minimal system describing one-dimensional harmonically trapped Bose-Bose mixtures.
We show that one can obtain strong signatures of chaos by increasing the inter-component interaction strength and breaking the symmetry of intra-component interactions.
arXiv Detail & Related papers (2023-01-12T05:26:12Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.