Observation of multiple steady states with engineered dissipation
- URL: http://arxiv.org/abs/2308.13235v1
- Date: Fri, 25 Aug 2023 08:06:44 GMT
- Title: Observation of multiple steady states with engineered dissipation
- Authors: Li Li, Tong Liu, Xue-Yi Guo, He Zhang, Silu Zhao, Zhongcheng Xiang,
Xiaohui Song, Yu-Xiang Zhang, Kai Xu, Heng Fan, and Dongning Zheng
- Abstract summary: We introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system.
We find that the information saved in the initial state maintains in the steady state driven by the continuous dissipation on a five-qubit chain.
- Score: 19.94001756170236
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Simulating the dynamics of open quantum systems is essential in achieving
practical quantum computation and understanding novel nonequilibrium behaviors.
However, quantum simulation of a many-body system coupled to an engineered
reservoir has yet to be fully explored in present-day experiment platforms. In
this work, we introduce engineered noise into a one-dimensional ten-qubit
superconducting quantum processor to emulate a generic many-body open quantum
system. Our approach originates from the stochastic unravellings of the master
equation. By measuring the end-to-end correlation, we identify multiple steady
states stemmed from a strong symmetry, which is established on the modified
Hamiltonian via Floquet engineering. Furthermore, we find that the information
saved in the initial state maintains in the steady state driven by the
continuous dissipation on a five-qubit chain. Our work provides a manageable
and hardware-efficient strategy for the open-system quantum simulation.
Related papers
- Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Convex Optimization for Nonequilibrium Steady States on a Hybrid Quantum
Processor [0.0]
We present a quantum-assisted algorithm to determine the steady states of open system dynamics.
We demonstrate that our hybrid approach allows us to estimate the steady states of higher dimensional open quantum systems.
arXiv Detail & Related papers (2022-04-07T04:12:49Z) - Coherent quantum annealing in a programmable 2000-qubit Ising chain [1.2472275770062884]
We show coherent evolution through a quantum phase transition in the paradigmatic setting of the 1D transverse-field Ising chain.
Results are in quantitative agreement with analytical solutions to the closed-system quantum model.
These experiments demonstrate that large-scale quantum annealers can be operated coherently.
arXiv Detail & Related papers (2022-02-11T19:00:00Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Experimental simulation of open quantum system dynamics via
Trotterization [8.581263348642212]
We experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment.
By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized.
High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy.
arXiv Detail & Related papers (2021-08-05T06:17:26Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.