論文の概要: Causal Regularization Using Domain Priors
- arxiv url: http://arxiv.org/abs/2111.12490v1
- Date: Wed, 24 Nov 2021 13:38:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-25 18:17:10.250913
- Title: Causal Regularization Using Domain Priors
- Title(参考訳): ドメインプライオリティを用いた因果規則化
- Authors: Abbavaram Gowtham Reddy, Sai Srinivas Kancheti, Vineeth N
Balasubramanian, Amit Sharma
- Abstract要約: そこで本研究では,因果ドメインをネットワークに組み込む因果正規化手法を提案する。
このアプローチは様々な因果前の仕様に一般化可能であることを示す。
ほとんどのデータセットでは、精度を犠牲にすることなくドメイン優先の一貫性のあるモデルを得ることができる。
- 参考スコア(独自算出の注目度): 23.31291916031858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks leverage both causal and correlation-based relationships in
data to learn models that optimize a given performance criterion, such as
classification accuracy. This results in learned models that may not
necessarily reflect the true causal relationships between input and output.
When domain priors of causal relationships are available at the time of
training, it is essential that a neural network model maintains these
relationships as causal, even as it learns to optimize the performance
criterion. We propose a causal regularization method that can incorporate such
causal domain priors into the network and which supports both direct and total
causal effects. We show that this approach can generalize to various kinds of
specifications of causal priors, including monotonicity of causal effect of a
given input feature or removing a certain influence for purposes of fairness.
Our experiments on eleven benchmark datasets show the usefulness of this
approach in regularizing a learned neural network model to maintain desired
causal effects. On most datasets, domain-prior consistent models can be
obtained without compromising on accuracy.
- Abstract(参考訳): ニューラルネットワークはデータの因果関係と相関関係を利用して、分類精度などの所定の性能基準を最適化するモデルを学ぶ。
この結果、入力と出力の間の真の因果関係を必ずしも反映しない学習モデルが得られる。
トレーニング時に因果関係のドメインプライオリティが利用可能である場合、パフォーマンス基準の最適化を学んでも、ニューラルネットワークモデルがこれらの関係を因果として維持することが不可欠である。
本稿では,このような因果領域の優先順位をネットワークに取り入れ,直接的および全体的因果効果の両方をサポートする因果正規化手法を提案する。
このアプローチは、与えられた入力特徴の因果効果の単調性や公平な目的のために特定の影響を取り除くことを含む、因果優先の様々な種類の仕様に一般化できることを示す。
11個のベンチマークデータセットを用いた実験では,学習したニューラルネットワークモデルを規則化し,望ましい因果効果を維持するのに,この手法の有用性を示す。
ほとんどのデータセットでは、精度を損なうことなく、ドメイン優先の一貫性モデルを得ることができる。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - Towards Causal Analysis of Empirical Software Engineering Data: The
Impact of Programming Languages on Coding Competitions [10.51554436183424]
本稿では,構造因果モデルに基づく新しい手法について述べる。
Code Jamにおけるプログラマのパフォーマンスに関する公開データを解析するために,これらのアイデアを適用した。
全く同じデータの純粋に関連性のある解析と因果解析の間には,かなりの差が認められた。
論文 参考訳(メタデータ) (2023-01-18T13:46:16Z) - De-Biasing Generative Models using Counterfactual Methods [0.0]
我々はCausal Counterfactual Generative Model (CCGM) と呼ばれる新しいデコーダベースのフレームワークを提案する。
提案手法は,因果関係の忠実さを強調するために,因果関係の潜在空間VAEモデルと特定の修正を加えたものである。
因果的学習と符号化/復号化が因果的介入の質をいかに高めるかを検討する。
論文 参考訳(メタデータ) (2022-07-04T16:53:20Z) - How Tempering Fixes Data Augmentation in Bayesian Neural Networks [22.188535244056016]
テンパリングは、拡張のモデリングから生じる誤特定を暗黙的に減らし、すなわちデータとして示す。
温度は有効サンプルサイズの役割を模倣し、増強によって提供される情報の利得を反映している。
論文 参考訳(メタデータ) (2022-05-27T11:06:56Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - Domain Adaptative Causality Encoder [52.779274858332656]
我々は,適応因果同定と局所化の課題に対処するために,依存木の特徴と敵対学習を活用する。
我々は、テキストにあらゆる種類の因果関係を統合する新しい因果関係データセット、MedCausを提案する。
論文 参考訳(メタデータ) (2020-11-27T04:14:55Z) - Estimating Causal Effects with the Neural Autoregressive Density
Estimator [6.59529078336196]
我々は、Pearlのdo-calculusフレームワーク内の因果効果を推定するために、神経自己回帰密度推定器を使用する。
本手法は,変数間の相互作用を明示的にモデル化することなく,非線形システムから因果効果を抽出できることを示す。
論文 参考訳(メタデータ) (2020-08-17T13:12:38Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。