論文の概要: Causality-inspired Single-source Domain Generalization for Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2111.12525v2
- Date: Fri, 26 Nov 2021 17:09:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 12:42:57.139987
- Title: Causality-inspired Single-source Domain Generalization for Medical Image
Segmentation
- Title(参考訳): 医学画像分割のための因果性に触発された単一ソースドメインの一般化
- Authors: Cheng Ouyang, Chen Chen, Surui Li, Zeju Li, Chen Qin, Wenjia Bai,
Daniel Rueckert
- Abstract要約: 合成ドメインシフトトレーニング例にセグメンテーションモデルを公開するための簡単なデータ拡張手法を提案する。
具体的には,1)画像強度とテクスチャの相違に頑健な深層モデルを実現するために,ランダムに重み付けされた浅層ネットワーク群を用いる。
我々は、ネットワークが予測を行うためのドメイン固有の手がかりとして捉えうる画像内のオブジェクト間の急激な相関を取り除き、未知のドメインに分解する可能性がある。
- 参考スコア(独自算出の注目度): 12.535598563779475
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning models usually suffer from domain shift issues, where models
trained on one source domain do not generalize well to other unseen domains. In
this work, we investigate the single-source domain generalization problem:
training a deep network that is robust to unseen domains, under the condition
that training data is only available from one source domain, which is common in
medical imaging applications. We tackle this problem in the context of
cross-domain medical image segmentation. Under this scenario, domain shifts are
mainly caused by different acquisition processes. We propose a simple
causality-inspired data augmentation approach to expose a segmentation model to
synthesized domain-shifted training examples. Specifically, 1) to make the deep
model robust to discrepancies in image intensities and textures, we employ a
family of randomly-weighted shallow networks. They augment training images
using diverse appearance transformations. 2) Further we show that spurious
correlations among objects in an image are detrimental to domain robustness.
These correlations might be taken by the network as domain-specific clues for
making predictions, and they may break on unseen domains. We remove these
spurious correlations via causal intervention. This is achieved by resampling
the appearances of potentially correlated objects independently. The proposed
approach is validated on three cross-domain segmentation tasks: cross-modality
(CT-MRI) abdominal image segmentation, cross-sequence (bSSFP-LGE) cardiac MRI
segmentation, and cross-center prostate MRI segmentation. The proposed approach
yields consistent performance gains compared with competitive methods when
tested on unseen domains.
- Abstract(参考訳): ディープラーニングモデルは、通常、あるソースドメインでトレーニングされたモデルが他の目に見えないドメインにうまく一般化しない、ドメインシフトの問題に苦しむ。
本研究では, 医用画像アプリケーションで一般的である1つのソースドメインからのみ, トレーニングデータが利用可能であることを条件として, 未取得ドメインに頑健な深層ネットワークをトレーニングする, 単一ソースドメイン一般化問題について検討する。
ドメイン間医療画像セグメンテーションの文脈においてこの問題に対処する。
このシナリオでは、ドメインシフトは主に異なる取得プロセスによって引き起こされる。
ドメインシフトトレーニング例の合成にセグメンテーションモデルを公開するために,単純な因果関係に触発されたデータ拡張手法を提案する。
具体的には
1) 深層モデルを画像強度とテクスチャのばらつきに頑健にするために, ランダムに重み付けされた浅層ネットワーク群を用いた。
多様な外観変換を用いてトレーニングイメージを増強する。
2)さらに,画像内のオブジェクト間のスプリアス相関がドメインロバスト性に有害であることを示す。
これらの相関関係は、ネットワークによって予測を行うためのドメイン固有の手がかりとして捉えられ、未知のドメインを壊す可能性がある。
因果介入によってこれらの急激な相関を除去する。
これは、潜在的な相関オブジェクトの外観を独立に再サンプリングすることで達成される。
提案手法は,CT-MRIの腹部画像分割,bSSFP-LGEの心臓MRI分割,中心前立腺MRI分割という3つの領域横断的課題に対して検証された。
提案手法は,未取得領域でテストした場合の競合手法と比較して,一貫性のある性能向上を実現する。
関連論文リスト
- DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
ドメインギャップは、異なるフォアグラウンド(核)-バックグラウンド比によっても引き起こされる可能性があると我々は主張する。
まず、異なる領域間の劇的な画像色変化を緩和する再カラー化手法を提案する。
次に,前景-背景比の変動に頑健な新しいインスタンス正規化手法を提案する。
論文 参考訳(メタデータ) (2023-09-01T01:01:13Z) - Generalizable Medical Image Segmentation via Random Amplitude Mixup and
Domain-Specific Image Restoration [17.507951655445652]
本稿では,新しい医用画像分割法を提案する。
具体的には、セグメント化モデルと自己超越ドメイン固有の画像復元モジュールを組み合わせることで、マルチタスクパラダイムとしてアプローチを設計する。
医用画像における2つの一般化可能なセグメンテーションベンチマークにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-08-08T03:56:20Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
ドメインの一般化は通常、モデル学習のために複数のソースドメインからのデータを必要とする。
本稿では,1つのソースドメインのみで最悪のシナリオ下でモデルを学習し,異なる未確認対象ドメインに直接一般化する,重要な単一ドメインの一般化問題について考察する。
本稿では,領域間で不変なセグメンテーションのセグメンテーション先情報を抽出し,統合する医用画像セグメンテーションにおいて,この問題に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-29T08:46:27Z) - Contrastive Domain Disentanglement for Generalizable Medical Image
Segmentation [12.863227646939563]
本稿では,一般的な医用画像分割のためのコントラストディスタングル・ドメイン(CDD)ネットワークを提案する。
まず、医用画像を解剖学的表現因子とモダリティ表現因子に分解する不整合ネットワークを導入する。
次に、モデル一般化学習のための新しい領域をランダムに生成できる領域拡張戦略を提案する。
論文 参考訳(メタデータ) (2022-05-13T10:32:41Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Unsupervised Domain Adaptation with Variational Approximation for
Cardiac Segmentation [15.2292571922932]
非教師なし領域適応は、医用画像セグメンテーションに有用である。
両ドメインの潜在機能を共通かつパラメータ化された変分形式に駆動する新しいフレームワークを提案する。
これは、変分オートエンコーダ(VAE)とこの変分近似の正規化に基づく2つのネットワークによって実現される。
論文 参考訳(メタデータ) (2021-06-16T13:00:39Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
ドメイン適応セマンティックセグメンテーション(ドメイン適応セマンティックセグメンテーション)とは、特定のソースドメインのアノテーションだけで特定のターゲットドメイン上で予測を行うことを指す。
画素ワイド表示アライメントを可能にする意味分布対応コントラスト適応アルゴリズムを提案する。
複数のベンチマークでSDCAを評価し、既存のアルゴリズムを大幅に改善します。
論文 参考訳(メタデータ) (2021-05-11T13:21:25Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
マルチモーダル心臓画像分割のための新しいUDA法を提案する。
提案手法は、逆学習に基づいて、異なる空間におけるソースとターゲットドメイン間のネットワーク特徴を適応する。
本手法はannotated source domainからunannotated target domainへの適応により2つの心データセットで検証した。
論文 参考訳(メタデータ) (2021-03-15T08:59:44Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
対象ドメインに対するCNNの一般化能力を向上させるために,新しいドメイン指向特徴埋め込み(DoFE)フレームワークを提案する。
私たちのDoFEフレームワークは、マルチソースドメインから学んだ追加のドメイン事前知識で、画像機能を動的に強化します。
本フレームワークは、未確認データセットのセグメンテーション結果を満足して生成し、他の領域の一般化やネットワークの正規化手法を超越する。
論文 参考訳(メタデータ) (2020-10-13T07:28:39Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。