論文の概要: ReAct: Out-of-distribution Detection With Rectified Activations
- arxiv url: http://arxiv.org/abs/2111.12797v1
- Date: Wed, 24 Nov 2021 21:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 17:22:21.867910
- Title: ReAct: Out-of-distribution Detection With Rectified Activations
- Title(参考訳): ReAct:rectified Activationによるアウト・オブ・ディストリビューション検出
- Authors: Yiyou Sun and Chuan Guo and Yixuan Li
- Abstract要約: オフ・オブ・ディストリビューション (OOD) 検出は, 実用的重要性から近年注目されている。
主な課題の1つは、モデルがしばしばOODデータに対して高い信頼性の予測を生成することである。
我々は,OODデータに対するモデル過信を低減するためのシンプルで効果的な手法であるReActを提案する。
- 参考スコア(独自算出の注目度): 20.792140933660075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection has received much attention lately due to
its practical importance in enhancing the safe deployment of neural networks.
One of the primary challenges is that models often produce highly confident
predictions on OOD data, which undermines the driving principle in OOD
detection that the model should only be confident about in-distribution
samples. In this work, we propose ReAct--a simple and effective technique for
reducing model overconfidence on OOD data. Our method is motivated by novel
analysis on internal activations of neural networks, which displays highly
distinctive signature patterns for OOD distributions. Our method can generalize
effectively to different network architectures and different OOD detection
scores. We empirically demonstrate that ReAct achieves competitive detection
performance on a comprehensive suite of benchmark datasets, and give
theoretical explication for our method's efficacy. On the ImageNet benchmark,
ReAct reduces the false positive rate (FPR95) by 25.05% compared to the
previous best method.
- Abstract(参考訳): 分散(ood)検出が注目されているのは,ニューラルネットワークの安全な展開を促進する上での実用的重要性からである。
主な課題の1つは、モデルがOODデータに対して高い信頼性の予測を生成することであり、これはOOD検出における駆動原理を損なうものである。
本研究では,OODデータに対するモデル過信を低減するための簡易かつ効果的な手法であるReActを提案する。
本手法は,OOD分布の顕著なシグネチャパターンを示すニューラルネットワークの内部アクティベーションの新たな解析によって動機付けられた。
提案手法は,異なるネットワークアーキテクチャと異なるOOD検出スコアに効果的に一般化することができる。
我々は、ReActがベンチマークデータセットの総合的なスイート上で競合検出性能を達成することを実証し、提案手法の有効性を理論的に説明する。
ImageNetベンチマークでは、ReActは以前のベストメソッドと比較して偽陽性率(FPR95)を25.05%削減している。
関連論文リスト
- SeTAR: Out-of-Distribution Detection with Selective Low-Rank Approximation [5.590633742488972]
ニューラルネットワークの安全なデプロイには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
トレーニング不要なOOD検出手法であるSeTARを提案する。
SeTARは、単純なグリーディ探索アルゴリズムを用いて、モデルの重量行列のポストホックな修正によるOOD検出を強化する。
私たちの研究は、OOD検出のためのスケーラブルで効率的なソリューションを提供し、この分野で新しい最先端を設定します。
論文 参考訳(メタデータ) (2024-06-18T13:55:13Z) - Mitigating Overconfidence in Out-of-Distribution Detection by Capturing Extreme Activations [1.8531577178922987]
Overconfidence"は特定のニューラルネットワークアーキテクチャの本質的な性質であり、OOD検出の低さにつながる。
ニューラルネットワークの最後層における極端なアクティベーション値を計測し、この過信のプロキシを利用して、複数のOOD検出ベースラインを改善する。
基準値と比較すると,OOD検出は2桁に増加し,精度が向上することが多い。
論文 参考訳(メタデータ) (2024-05-21T10:14:50Z) - Advancing Out-of-Distribution Detection through Data Purification and
Dynamic Activation Function Design [12.45245390882047]
OOD-R(Out-of-Distribution-Rectified)は,ノイズ低減特性が向上したオープンソースデータセットの集合体である。
OOD-Rはノイズフィルタリング技術を導入してデータセットを洗練し、OOD検出アルゴリズムのより正確で信頼性の高い評価を確実にする。
本稿では,多様な入力に対するモデルの応答を微調整し,特徴抽出の安定性を向上させる革新的な方法であるActFunを提案する。
論文 参考訳(メタデータ) (2024-03-06T02:39:22Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - WeShort: Out-of-distribution Detection With Weak Shortcut structure [0.0]
我々は,OODデータに対するニューラルネットワークの過信を低減するために,シンプルで効果的なポストホック手法WeShortを提案する。
提案手法はOOD検出の異なるスコアと互換性があり,ネットワークの異なるアーキテクチャによく対応できる。
論文 参考訳(メタデータ) (2022-06-23T07:59:10Z) - RODD: A Self-Supervised Approach for Robust Out-of-Distribution
Detection [12.341250124228859]
本稿では,分散データセットに依存しない簡易かつ効果的なOOD検出手法を提案する。
提案手法は, コンパクトな低次元空間上に埋没するトレーニングサンプルの自己教師型特徴学習に依存する。
自己教師付きコントラスト学習を用いた事前学習モデルでは、潜伏空間における一次元特徴学習のより良いモデルが得られることを実証的に示す。
論文 参考訳(メタデータ) (2022-04-06T03:05:58Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。