論文の概要: WeShort: Out-of-distribution Detection With Weak Shortcut structure
- arxiv url: http://arxiv.org/abs/2207.05055v2
- Date: Wed, 13 Jul 2022 01:02:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-17 20:46:59.901396
- Title: WeShort: Out-of-distribution Detection With Weak Shortcut structure
- Title(参考訳): weshort:弱いショートカット構造を持つ分散外検出
- Authors: Jinhong Lin
- Abstract要約: 我々は,OODデータに対するニューラルネットワークの過信を低減するために,シンプルで効果的なポストホック手法WeShortを提案する。
提案手法はOOD検出の異なるスコアと互換性があり,ネットワークの異なるアーキテクチャによく対応できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have achieved impressive performance for data in the
distribution which is the same as the training set but can produce an
overconfident incorrect result for the data these networks have never seen.
Therefore, it is essential to detect whether inputs come from
out-of-distribution(OOD) in order to guarantee the safety of neural networks
deployed in the real world. In this paper, we propose a simple and effective
post-hoc technique, WeShort, to reduce the overconfidence of neural networks on
OOD data. Our method is inspired by the observation of the internal residual
structure, which shows the separation of the OOD and in-distribution (ID) data
in the shortcut layer. Our method is compatible with different OOD detection
scores and can generalize well to different architectures of networks. We
demonstrate our method on various OOD datasets to show its competitive
performances and provide reasonable hypotheses to explain why our method works.
On the ImageNet benchmark, Weshort achieves state-of-the-art performance on the
false positive rate (FPR95) and the area under the receiver operating
characteristic (AUROC) on the family of post-hoc methods.
- Abstract(参考訳): ニューラルネットワークは、トレーニングセットと同じだが、これらのネットワークが見たことのないデータに対して、過度に不正確な結果をもたらすことができる、分散におけるデータに対する印象的なパフォーマンスを達成した。
したがって、現実世界に展開されるニューラルネットワークの安全性を保証するために、入力が分散(ood)から来るかどうかを検出することが不可欠である。
本稿では,OODデータに対するニューラルネットワークの過信を低減するために,単純で効果的なポストホック手法WeShortを提案する。
本手法は,OODとIDデータの短絡層内分離を示す内部残留構造の観察に着想を得たものである。
提案手法はOOD検出の異なるスコアと互換性があり,ネットワークの異なるアーキテクチャによく対応できる。
提案手法は, 各種OODデータセット上で, その競合性能を示すとともに, 動作理由を説明する合理的な仮説を提供する。
ImageNetのベンチマークでは、Weshortは偽陽性率(FPR95)とポストホック法(英語版)の家系における受信動作特性(AUROC)の領域で最先端のパフォーマンスを達成する。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Gradient-Regularized Out-of-Distribution Detection [28.542499196417214]
現実のアプリケーションにおけるニューラルネットワークの課題の1つは、これらのモデルが元のトレーニングディストリビューションからデータが送られていないときに犯す過信エラーである。
本稿では,学習中の損失関数の勾配に埋め込まれた情報を活用して,ネットワークが各サンプルに対して所望のOODスコアを学習できるようにする方法を提案する。
また、トレーニング期間中に、より情報性の高いOODサンプルにネットワークを露出させるための、新しいエネルギーベースのサンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-04-18T17:50:23Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - ReAct: Out-of-distribution Detection With Rectified Activations [20.792140933660075]
オフ・オブ・ディストリビューション (OOD) 検出は, 実用的重要性から近年注目されている。
主な課題の1つは、モデルがしばしばOODデータに対して高い信頼性の予測を生成することである。
我々は,OODデータに対するモデル過信を低減するためのシンプルで効果的な手法であるReActを提案する。
論文 参考訳(メタデータ) (2021-11-24T21:02:07Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。