Amortized Prompt: Lightweight Fine-Tuning for CLIP in Domain
Generalization
- URL: http://arxiv.org/abs/2111.12853v1
- Date: Thu, 25 Nov 2021 00:25:54 GMT
- Title: Amortized Prompt: Lightweight Fine-Tuning for CLIP in Domain
Generalization
- Authors: Xin Zhang, Yusuke Iwasawa, Yutaka Matsuo, Shixiang Shane Gu
- Abstract summary: Domain generalization is a difficult transfer learning problem aiming to learn a generalizable model to unseen domains.
Recent massive pre-trained models such as CLIP and GPT-3 have been shown to be robust to many distribution shifts.
We propose AP (Amortized Prompt) as a novel approach for domain inference in the form of prompt generation.
- Score: 25.367775241988618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain generalization (DG) is a difficult transfer learning problem aiming to
learn a generalizable model to unseen domains. Recent massive pre-trained
models such as CLIP and GPT-3, i.e. foundation models (FMs), have been shown to
be robust to many distribution shifts and therefore should lead to substantial
improvements in DG. In this work, we study generic ways to adopt CLIP for DG
problems in image classification, where we evaluate on naive zero-shot learning
and full DG learning settings. For the latter, we propose AP (Amortized
Prompt), as a novel approach for domain inference in the form of prompt
generation. Using several standard datasets on domain generalization benchmark,
namely PACS, VLCS, OfficeHome, and TerraIncognita, CLIP provides comparable
performance without fine-tuning any parameters, suggesting the applicability
and importance of FM in DG. In addition, we show that combining domain prompt
inference with CLIP enables AP to outperform strong baselines and the naive
CLIP baselines by a large margin, raising accuracy from 71.3\% to 79.3\%. We
hope the simplicity and success of our approach emphasizes the importance of
and leads to wider more adoption and analysis of foundation models in the field
of domain generalization.
Related papers
- Advancing Open-Set Domain Generalization Using Evidential Bi-Level Hardest Domain Scheduler [45.71475375161575]
In Open-Set Domain Generalization, the model is exposed to both new variations of data appearance (domains) and open-set conditions.
We propose the Evidential Bi-Level Hardest Domain Scheduler (EBiL-HaDS) to achieve an adaptive domain scheduler.
arXiv Detail & Related papers (2024-09-26T05:57:35Z) - PointDGMamba: Domain Generalization of Point Cloud Classification via Generalized State Space Model [77.00221501105788]
Domain Generalization (DG) has been recently explored to improve the generalizability of point cloud classification (PCC) models toward unseen domains.
We present the first work that studies the generalizability of state space models (SSMs) in DG PCC.
We propose a novel framework, PointDGMamba, that excels in strong generalizability toward unseen domains.
arXiv Detail & Related papers (2024-08-24T12:53:48Z) - MADG: Margin-based Adversarial Learning for Domain Generalization [25.45950080930517]
We propose a novel adversarial learning DG algorithm, MADG, motivated by a margin loss-based discrepancy metric.
The proposed MADG model learns domain-invariant features across all source domains and uses adversarial training to generalize well to the unseen target domain.
We extensively experiment with the MADG model on popular real-world DG datasets.
arXiv Detail & Related papers (2023-11-14T19:53:09Z) - DoGE: Domain Reweighting with Generalization Estimation [42.32000165235568]
We propose DOmain reweighting with Generalization Estimation (DoGE)
In our experiments, we extensively show how DoGE improves the generalization of the base model to any target data mixture.
DoGE can effectively identify inter-domain dependencies, and consistently achieves better test perplexity on the target domain.
arXiv Detail & Related papers (2023-10-23T22:51:58Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - FIXED: Frustratingly Easy Domain Generalization with Mixup [53.782029033068675]
Domain generalization (DG) aims to learn a generalizable model from multiple training domains such that it can perform well on unseen target domains.
A popular strategy is to augment training data to benefit generalization through methods such as Mixupcitezhang 2018mixup.
We propose a simple yet effective enhancement for Mixup-based DG, namely domain-invariant Feature mIXup (FIX)
Our approach significantly outperforms nine state-of-the-art related methods, beating the best performing baseline by 6.5% on average in terms of test accuracy.
arXiv Detail & Related papers (2022-11-07T09:38:34Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
Domain generalization (DG) aims to overcome the problem by leveraging multiple source domains to learn a domain-generalizable model.
In this paper, we propose a novel augmentation-based DG approach, dubbed AugLearn.
AugLearn shows effectiveness on three standard DG benchmarks, PACS, Office-Home and Digits-DG.
arXiv Detail & Related papers (2022-10-25T18:51:51Z) - Multi-level Consistency Learning for Semi-supervised Domain Adaptation [85.90600060675632]
Semi-supervised domain adaptation (SSDA) aims to apply knowledge learned from a fully labeled source domain to a scarcely labeled target domain.
We propose a Multi-level Consistency Learning framework for SSDA.
arXiv Detail & Related papers (2022-05-09T06:41:18Z) - Unsupervised Domain Generalization for Person Re-identification: A
Domain-specific Adaptive Framework [50.88463458896428]
Domain generalization (DG) has attracted much attention in person re-identification (ReID) recently.
Existing methods usually need the source domains to be labeled, which could be a significant burden for practical ReID tasks.
We propose a simple and efficient domain-specific adaptive framework, and realize it with an adaptive normalization module.
arXiv Detail & Related papers (2021-11-30T02:35:51Z) - Reappraising Domain Generalization in Neural Networks [8.06370138649329]
Domain generalization (DG) of machine learning algorithms is defined as their ability to learn a domain agnostic hypothesis from multiple training distributions.
We find that a straightforward Empirical Risk Minimization (ERM) baseline consistently outperforms existing DG methods.
We propose a classwise-DG formulation, where for each class, we randomly select one of the domains and keep it aside for testing.
arXiv Detail & Related papers (2021-10-15T10:06:40Z) - COLUMBUS: Automated Discovery of New Multi-Level Features for Domain
Generalization via Knowledge Corruption [12.555885317622131]
We address the challenging domain generalization problem, where a model trained on a set of source domains is expected to generalize well in unseen domains without exposure to their data.
We propose Columbus, a method that enforces new feature discovery via a targeted corruption of the most relevant input and multi-level representations of the data.
arXiv Detail & Related papers (2021-09-09T14:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.