PointDGMamba: Domain Generalization of Point Cloud Classification via Generalized State Space Model
- URL: http://arxiv.org/abs/2408.13574v1
- Date: Sat, 24 Aug 2024 12:53:48 GMT
- Title: PointDGMamba: Domain Generalization of Point Cloud Classification via Generalized State Space Model
- Authors: Hao Yang, Qianyu Zhou, Haijia Sun, Xiangtai Li, Fengqi Liu, Xuequan Lu, Lizhuang Ma, Shuicheng Yan,
- Abstract summary: Domain Generalization (DG) has been recently explored to improve the generalizability of point cloud classification (PCC) models toward unseen domains.
We present the first work that studies the generalizability of state space models (SSMs) in DG PCC.
We propose a novel framework, PointDGMamba, that excels in strong generalizability toward unseen domains.
- Score: 77.00221501105788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain Generalization (DG) has been recently explored to improve the generalizability of point cloud classification (PCC) models toward unseen domains. However, they often suffer from limited receptive fields or quadratic complexity due to the use of convolution neural networks or vision Transformers. In this paper, we present the first work that studies the generalizability of state space models (SSMs) in DG PCC and find that directly applying SSMs into DG PCC will encounter several challenges: the inherent topology of the point cloud tends to be disrupted and leads to noise accumulation during the serialization stage. Besides, the lack of designs in domain-agnostic feature learning and data scanning will introduce unanticipated domain-specific information into the 3D sequence data. To this end, we propose a novel framework, PointDGMamba, that excels in strong generalizability toward unseen domains and has the advantages of global receptive fields and efficient linear complexity. PointDGMamba consists of three innovative components: Masked Sequence Denoising (MSD), Sequence-wise Cross-domain Feature Aggregation (SCFA), and Dual-level Domain Scanning (DDS). In particular, MSD selectively masks out the noised point tokens of the point cloud sequences, SCFA introduces cross-domain but same-class point cloud features to encourage the model to learn how to extract more generalized features. DDS includes intra-domain scanning and cross-domain scanning to facilitate information exchange between features. In addition, we propose a new and more challenging benchmark PointDG-3to1 for multi-domain generalization. Extensive experiments demonstrate the effectiveness and state-of-the-art performance of our presented PointDGMamba.
Related papers
- One for All: Multi-Domain Joint Training for Point Cloud Based 3D Object Detection [71.78795573911512]
We propose textbfOneDet3D, a universal one-for-all model that addresses 3D detection across different domains.
We propose the domain-aware in scatter and context, guided by a routing mechanism, to address the data interference issue.
The fully sparse structure and anchor-free head further accommodate point clouds with significant scale disparities.
arXiv Detail & Related papers (2024-11-03T14:21:56Z) - Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - DGMamba: Domain Generalization via Generalized State Space Model [80.82253601531164]
Domain generalization(DG) aims at solving distribution shift problems in various scenes.
Mamba, as an emerging state space model (SSM), possesses superior linear complexity and global receptive fields.
We propose a novel framework for DG, named DGMamba, that excels in strong generalizability toward unseen domains.
arXiv Detail & Related papers (2024-04-11T14:35:59Z) - Gradient Alignment for Cross-Domain Face Anti-Spoofing [26.517887637150594]
We introduce GAC-FAS, a novel learning objective that encourages the model to converge towards an optimal flat minimum.
Unlike conventional sharpness-aware minimizers, GAC-FAS identifies ascending points for each domain and regulates the generalization gradient updates.
We demonstrate the efficacy of GAC-FAS through rigorous testing on challenging cross-domain FAS datasets.
arXiv Detail & Related papers (2024-02-29T02:57:44Z) - Learning to Adapt SAM for Segmenting Cross-domain Point Clouds [25.66755977728181]
Unsupervised domain adaptation (UDA) in 3D segmentation tasks presents a formidable challenge.
We propose an innovative hybrid feature augmentation methodology, which significantly enhances the alignment between the 3D feature space and SAM's feature space.
Our method is evaluated on many widely-recognized datasets and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-13T02:28:40Z) - SUG: Single-dataset Unified Generalization for 3D Point Cloud
Classification [44.27324696068285]
We propose a Single-dataset Unified Generalization (SUG) framework to alleviate the unforeseen domain differences faced by a well-trained source model.
Specifically, we first design a Multi-grained Sub-domain Alignment (MSA) method, which can constrain the learned representations to be domain-agnostic and discriminative.
Then, a Sample-level Domain-aware Attention (SDA) strategy is presented, which can selectively enhance easy-to-adapt samples from different sub-domains.
arXiv Detail & Related papers (2023-05-16T04:36:04Z) - COLUMBUS: Automated Discovery of New Multi-Level Features for Domain
Generalization via Knowledge Corruption [12.555885317622131]
We address the challenging domain generalization problem, where a model trained on a set of source domains is expected to generalize well in unseen domains without exposure to their data.
We propose Columbus, a method that enforces new feature discovery via a targeted corruption of the most relevant input and multi-level representations of the data.
arXiv Detail & Related papers (2021-09-09T14:52:05Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.