Joint stereo 3D object detection and implicit surface reconstruction
- URL: http://arxiv.org/abs/2111.12924v4
- Date: Sun, 16 Jun 2024 03:46:21 GMT
- Title: Joint stereo 3D object detection and implicit surface reconstruction
- Authors: Shichao Li, Xijie Huang, Zechun Liu, Kwang-Ting Cheng,
- Abstract summary: We present a new learning-based framework S-3D-RCNN that can recover accurate object orientation in SO(3) and simultaneously predict implicit rigid shapes from stereo RGB images.
For orientation estimation, in contrast to previous studies that map local appearance to observation angles, we propose a progressive approach by extracting meaningful Intermediate Geometrical Representations (IGRs)
This approach features a deep model that transforms perceived intensities from one or two views to object part coordinates to achieve direct egocentric object orientation estimation in the camera coordinate system.
To further achieve finer description inside 3D bounding boxes, we investigate the implicit shape estimation problem from stereo images
- Score: 39.30458073540617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new learning-based framework S-3D-RCNN that can recover accurate object orientation in SO(3) and simultaneously predict implicit rigid shapes from stereo RGB images. For orientation estimation, in contrast to previous studies that map local appearance to observation angles, we propose a progressive approach by extracting meaningful Intermediate Geometrical Representations (IGRs). This approach features a deep model that transforms perceived intensities from one or two views to object part coordinates to achieve direct egocentric object orientation estimation in the camera coordinate system. To further achieve finer description inside 3D bounding boxes, we investigate the implicit shape estimation problem from stereo images. We model visible object surfaces by designing a point-based representation, augmenting IGRs to explicitly address the unseen surface hallucination problem. Extensive experiments validate the effectiveness of the proposed IGRs, and S-3D-RCNN achieves superior 3D scene understanding performance. We also designed new metrics on the KITTI benchmark for our evaluation of implicit shape estimation.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation.
We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator.
We present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations.
arXiv Detail & Related papers (2022-09-17T21:28:57Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
We introduce RfD-Net that jointly detects and reconstructs dense object surfaces directly from point clouds.
We decouple the instance reconstruction into global object localization and local shape prediction.
Our approach consistently outperforms the state-of-the-arts and improves over 11 of mesh IoU in object reconstruction.
arXiv Detail & Related papers (2020-11-30T12:58:05Z) - Exploring intermediate representation for monocular vehicle pose
estimation [38.85309013717312]
We present a new learning-based framework to recover vehicle pose in SO(3) from a single RGB image.
In contrast to previous works that map from local appearance to observation angles, we explore a progressive approach by extracting meaningful Intermediate Geometrical Representations (IGRs)
This approach features a deep model that transforms perceived intensities to IGRs, which are mapped to a 3D representation encoding object orientation in the camera coordinate system.
arXiv Detail & Related papers (2020-11-17T06:30:51Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Joint Spatial-Temporal Optimization for Stereo 3D Object Tracking [34.40019455462043]
We propose a joint spatial-temporal optimization-based stereo 3D object tracking method.
From the network, we detect corresponding 2D bounding boxes on adjacent images and regress an initial 3D bounding box.
Dense object cues that associating to the object centroid are then predicted using a region-based network.
arXiv Detail & Related papers (2020-04-20T13:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.