論文の概要: Group equivariant neural posterior estimation
- arxiv url: http://arxiv.org/abs/2111.13139v1
- Date: Thu, 25 Nov 2021 15:50:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 16:12:18.020931
- Title: Group equivariant neural posterior estimation
- Title(参考訳): 群同変神経後部推定
- Authors: Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler,
Bernhard Sch\"olkopf, Jakob H. Macke
- Abstract要約: 群同変神経後部推定(GNPE)は、データの「目的」を自己整合的に標準化することに基づいている。
我々は,GNPEが3桁の精度で推論時間を短縮し,最先端の精度を実現することを示す。
- 参考スコア(独自算出の注目度): 3.951958782766239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation-based inference with conditional neural density estimators is a
powerful approach to solving inverse problems in science. However, these
methods typically treat the underlying forward model as a black box, with no
way to exploit geometric properties such as equivariances. Equivariances are
common in scientific models, however integrating them directly into expressive
inference networks (such as normalizing flows) is not straightforward. We here
describe an alternative method to incorporate equivariances under joint
transformations of parameters and data. Our method -- called group equivariant
neural posterior estimation (GNPE) -- is based on self-consistently
standardizing the "pose" of the data while estimating the posterior over
parameters. It is architecture-independent, and applies both to exact and
approximate equivariances. As a real-world application, we use GNPE for
amortized inference of astrophysical binary black hole systems from
gravitational-wave observations. We show that GNPE achieves state-of-the-art
accuracy while reducing inference times by three orders of magnitude.
- Abstract(参考訳): 条件付きニューラル密度推定器を用いたシミュレーションに基づく推論は、科学における逆問題に対する強力なアプローチである。
しかし、これらの方法は通常、下位のフォワードモデルをブラックボックスとして扱うが、等分散のような幾何学的性質を活用できない。
等価性は科学モデルでは一般的であるが、直接表現的推論ネットワーク(正規化フローなど)に統合することは簡単ではない。
本稿では,パラメータとデータの連成変換に同値を組み込む方法について述べる。
我々の手法は、群同変神経後部推定(GNPE)と呼ばれ、パラメーターを推定しながらデータの「目的」を自己整合的に標準化することに基づいている。
アーキテクチャ非依存であり、正確な等式と近似等式の両方に適用される。
実世界の応用として,重力波観測による天体物理ブラックホール系の漸近推定にgnpeを用いる。
我々は,GNPEが3桁の精度で推論時間を短縮し,最先端の精度を実現することを示す。
関連論文リスト
- Approximately Equivariant Neural Processes [47.14384085714576]
実世界のデータをモデル化する場合、学習問題は必ずしも同変ではなく、概ね同変であることが多い。
これを達成するための現在のアプローチは、通常任意のアーキテクチャや対称性群に対して最初から適用することはできない。
我々は、既存の同変アーキテクチャを用いてこれを実現するための一般的なアプローチを開発する。
論文 参考訳(メタデータ) (2024-06-19T12:17:14Z) - Learning to solve Bayesian inverse problems: An amortized variational inference approach using Gaussian and Flow guides [0.0]
本研究では,ベイズ逆写像,すなわちデータから後部への写像を学習することで,リアルタイムな推論を可能にする手法を開発する。
我々のアプローチは、ニューラルネットワークの前方通過のコストで、所定の観測のための後部分布を提供する。
論文 参考訳(メタデータ) (2023-05-31T16:25:07Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Learning Invariances in Neural Networks [51.20867785006147]
ネットワークパラメータや拡張パラメータに関して,拡張性よりも分布をパラメータ化し,トレーニング損失を同時に最適化する方法を示す。
画像分類,回帰,セグメンテーション,分子特性予測における不均一性の正確なセットと範囲を,拡張の広い空間から復元することができる。
論文 参考訳(メタデータ) (2020-10-22T17:18:48Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Sparse Gaussian Processes with Spherical Harmonic Features [14.72311048788194]
領域間変分ガウス過程(GP)の新たなクラスを導入する。
我々の推論スキームは変分フーリエの特徴に匹敵するが、次元の呪いに苦しむことはない。
実験の結果,本モデルでは,600万項目のデータセットに対して,2桁の精度で回帰モデルを適合させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-30T10:19:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。