論文の概要: Sparse Gaussian Processes with Spherical Harmonic Features
- arxiv url: http://arxiv.org/abs/2006.16649v1
- Date: Tue, 30 Jun 2020 10:19:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 04:43:58.015079
- Title: Sparse Gaussian Processes with Spherical Harmonic Features
- Title(参考訳): 球面高調波特徴を持つスパースガウス過程
- Authors: Vincent Dutordoir, Nicolas Durrande, James Hensman
- Abstract要約: 領域間変分ガウス過程(GP)の新たなクラスを導入する。
我々の推論スキームは変分フーリエの特徴に匹敵するが、次元の呪いに苦しむことはない。
実験の結果,本モデルでは,600万項目のデータセットに対して,2桁の精度で回帰モデルを適合させることができることがわかった。
- 参考スコア(独自算出の注目度): 14.72311048788194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new class of inter-domain variational Gaussian processes (GP)
where data is mapped onto the unit hypersphere in order to use spherical
harmonic representations. Our inference scheme is comparable to variational
Fourier features, but it does not suffer from the curse of dimensionality, and
leads to diagonal covariance matrices between inducing variables. This enables
a speed-up in inference, because it bypasses the need to invert large
covariance matrices. Our experiments show that our model is able to fit a
regression model for a dataset with 6 million entries two orders of magnitude
faster compared to standard sparse GPs, while retaining state of the art
accuracy. We also demonstrate competitive performance on classification with
non-conjugate likelihoods.
- Abstract(参考訳): 我々は,領域間変動ガウス過程(GP)の新たなクラスを導入し,球面調和表現を使用するために,データを単位超球面にマッピングする。
我々の推論スキームは変分フーリエ特徴に匹敵するが、次元性の呪いに悩まされず、誘導変数間の対角的共分散行列をもたらす。
これにより、大きな共分散行列を逆転する必要がなくなるため、推論の高速化が可能になる。
実験の結果,本モデルでは,標準のスパースGPに比べて2桁の精度で600万エントリのデータセットの回帰モデルに適合し,精度の維持が可能であることがわかった。
また,非共役確率の分類における競合性能を示す。
関連論文リスト
- Learning Sparse High-Dimensional Matrix-Valued Graphical Models From Dependent Data [12.94486861344922]
スパース,高次元,定常行列-ガウス時系列の条件独立グラフ(CIG)を推定する問題を考察する。
我々は、Kronecker分解性パワースペクトル密度(PSD)による問題をスパースベースで定式化することを考える。
合成データと実データの両方を利用した数値例を用いて,本手法について述べる。
論文 参考訳(メタデータ) (2024-04-29T19:32:50Z) - Solving High Frequency and Multi-Scale PDEs with Gaussian Processes [18.190228010565367]
PINNは、しばしば高周波およびマルチスケールのPDEを解決するのに苦労する。
我々はこの問題を解決するためにガウス過程(GP)フレームワークを利用する。
我々はKroneckerの製品特性と多線型代数を用いて計算効率とスケーラビリティを向上する。
論文 参考訳(メタデータ) (2023-11-08T05:26:58Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Generalised Gaussian Process Latent Variable Models (GPLVM) with
Stochastic Variational Inference [9.468270453795409]
ミニバッチ学習が可能なBayesianVMモデルの2倍の定式化について検討する。
このフレームワークが、異なる潜在変数の定式化とどのように互換性を持つかを示し、モデルの組を比較する実験を行う。
我々は、膨大な量の欠落データの存在下でのトレーニングと、高忠実度再構築の実施を実証する。
論文 参考訳(メタデータ) (2022-02-25T21:21:51Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Laplace Matching for fast Approximate Inference in Generalized Linear
Models [27.70274403550477]
本論文では,高い近似品質を実現しつつ,計算的に安価に設計した近似推論フレームワークを提案する。
我々が emphLaplace Matching と呼ぶこの概念は、指数群のパラメータ空間間の閉形式、近似、双方向変換を含む。
これにより、GLMにおける推論を(小さな近似誤差で)共役推論に変換する。
論文 参考訳(メタデータ) (2021-05-07T08:25:17Z) - tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder [0.0]
tvGP-VAEはカーネル関数を使用して相関を明示的にモデル化することができる。
そこで本研究では,どの相関構造を潜在空間で明示的に表現するかの選択が,モデル性能に大きな影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2020-06-08T17:59:13Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。