Mitigating Noise-Induced Gradient Vanishing in Variational Quantum
Algorithm Training
- URL: http://arxiv.org/abs/2111.13209v1
- Date: Thu, 25 Nov 2021 18:28:34 GMT
- Title: Mitigating Noise-Induced Gradient Vanishing in Variational Quantum
Algorithm Training
- Authors: Anbang Wu, Gushu Li, Yufei Ding, Yuan Xie
- Abstract summary: Variational quantum algorithms are expected to demonstrate the advantage of quantum computing on noisy quantum computers.
Training such variational quantum algorithms suffers from gradient vanishing as the size of the algorithm increases.
We propose a novel training scheme to mitigate such noise-induced gradient vanishing.
- Score: 14.343891429004639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms are expected to demonstrate the advantage of
quantum computing on near-term noisy quantum computers. However, training such
variational quantum algorithms suffers from gradient vanishing as the size of
the algorithm increases. Previous work cannot handle the gradient vanishing
induced by the inevitable noise effects on realistic quantum hardware. In this
paper, we propose a novel training scheme to mitigate such noise-induced
gradient vanishing. We first introduce a new cost function of which the
gradients are significantly augmented by employing traceless observables in
truncated subspace. We then prove that the same minimum can be reached by
optimizing the original cost function with the gradients from the new cost
function. Experiments show that our new training scheme is highly effective for
major variational quantum algorithms of various tasks.
Related papers
- Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - A Novel Approach to Reduce Derivative Costs in Variational Quantum Algorithms [0.0]
Quantum Non-Demolition Measurement (QNDM) to efficiently estimate the gradients or the Hessians of a quantum observable.
This is a key step and a resource-demanding task when we want to minimize the cost function associated with a quantum observable.
In our detailed analysis, we account for all the resources needed to implement the QNDM approach with a fixed accuracy and compare them to the current state-of-the-art method.
A significant outcome of our study is the implementation of the QNDM method in Python, provided in the supplementary material citeqndm_gradient
arXiv Detail & Related papers (2024-04-02T19:06:01Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
We introduce a novel meta-optimization algorithm that trains a emphmeta-optimizer network to output parameters for the quantum circuit.
We show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
arXiv Detail & Related papers (2023-04-15T01:09:12Z) - Error Analysis of the Variational Quantum Eigensolver Algorithm [0.18188255328029254]
We study variational quantum eigensolver (VQE) and its individual quantum subroutines.
We show through explicit simulation that the VQE algorithm effectively collapses already when single errors occur during a quantum processing call.
arXiv Detail & Related papers (2023-01-18T02:02:30Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Towards Efficient Ansatz Architecture for Variational Quantum Algorithms [12.728075253374062]
Variational quantum algorithms are expected to demonstrate the advantage of quantum computing on noisy quantum computers.
Training such variational quantum algorithms suffers from gradient vanishing as the size of the algorithm increases.
We propose a novel training scheme to mitigate such noise-induced gradient vanishing.
arXiv Detail & Related papers (2021-11-26T19:41:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Algorithmic Error Mitigation Scheme for Current Quantum Processors [0.0]
We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method.
We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations.
arXiv Detail & Related papers (2020-08-25T09:48:20Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.