Algorithmic Error Mitigation Scheme for Current Quantum Processors
- URL: http://arxiv.org/abs/2008.10914v4
- Date: Tue, 17 May 2022 09:50:05 GMT
- Title: Algorithmic Error Mitigation Scheme for Current Quantum Processors
- Authors: Philippe Suchsland, Francesco Tacchino, Mark H. Fischer, Titus
Neupert, Panagiotis Kl. Barkoutsos and Ivano Tavernelli
- Abstract summary: We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method.
We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a hardware agnostic error mitigation algorithm for near term
quantum processors inspired by the classical Lanczos method. This technique can
reduce the impact of different sources of noise at the sole cost of an increase
in the number of measurements to be performed on the target quantum circuit,
without additional experimental overhead. We demonstrate through numerical
simulations and experiments on IBM Quantum hardware that the proposed scheme
significantly increases the accuracy of cost functions evaluations within the
framework of variational quantum algorithms, thus leading to improved
ground-state calculations for quantum chemistry and physics problems beyond
state-of-the-art results.
Related papers
- Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - An Early Investigation of the HHL Quantum Linear Solver for Scientific Applications [7.495181307075487]
We explore using the Harrow-Hassidim-Lloyd (HHL) algorithm to address scientific and engineering problems through quantum computing.
Focusing on domains such as power-grid management and heat transfer problems, we demonstrate the correlations of the precision of quantum phase estimation.
We conclude the exponential resource cost from quantum phase estimation before and after quantum error correction and illustrate a potential way to reduce the demands on physical qubits.
arXiv Detail & Related papers (2024-04-29T19:21:38Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
We obtain extremely tight bounds for standard NISQ proposals in both the noisy and noiseless regimes.
The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing.
arXiv Detail & Related papers (2022-04-07T13:58:44Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Randomized compiling for scalable quantum computing on a noisy
superconducting quantum processor [0.0]
Coherent errors limit the performance of quantum algorithms in an unpredictable manner.
Average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors.
Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors.
arXiv Detail & Related papers (2020-10-01T06:52:45Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.