Contextuality and Wigner negativity are equivalent for
continuous-variable quantum measurements
- URL: http://arxiv.org/abs/2111.13218v2
- Date: Sat, 10 Dec 2022 03:08:19 GMT
- Title: Contextuality and Wigner negativity are equivalent for
continuous-variable quantum measurements
- Authors: Robert I. Booth, Ulysse Chabaud and Pierre-Emmanuel Emeriau
- Abstract summary: We show that contextuality and Wigner negativity are in fact equivalent for the standard models of continuous-variable quantum computing.
Our results pave the way towards practical demonstrations of continuous-variable contextuality, and shed light on the significance of negative probabilities in phase-space descriptions of quantum mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers will provide considerable speedups with respect to their
classical counterparts. However, the identification of the innately quantum
features that enable these speedups is challenging. In the continuous-variable
setting - a promising paradigm for the realisation of universal, scalable, and
fault-tolerant quantum computing - contextuality and Wigner negativity have
been perceived as two such distinct resources. Here we show that they are in
fact equivalent for the standard models of continuous-variable quantum
computing. While our results provide a unifying picture of continuous-variable
resources for quantum speedup, they also pave the way towards practical
demonstrations of continuous-variable contextuality, and shed light on the
significance of negative probabilities in phase-space descriptions of quantum
mechanics.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Harnessing quantumness of states using discrete Wigner functions under
(non)-Markovian quantum channels [0.0]
The study of Wigner negativity and its evolution under different quantum channels can provide insight into the stability and robustness of quantum states.
We construct different negative quantum states which can be used as a resource for quantum computation and quantum teleportation.
arXiv Detail & Related papers (2023-03-09T14:41:38Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - The Interplay between Quantum Contextuality and Wigner Negativity [0.0]
This thesis focuses on two nonclassical behaviours: quantum contextuality and Wigner negativity.
quantum contextuality is a notion superseding nonlocality that can be exhibited by quantum systems.
Wigner negativity is an unsettling non-classical feature of quantum states that originates from phase-space formulation in continuous-variable quantum optics.
arXiv Detail & Related papers (2022-04-19T10:05:09Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Exact bistability and time pseudo-crystallization of driven-dissipative
fermionic lattices [0.0]
We prove bistability in precisely the quantum fluctuations.
Surprisingly, rather than destroying bistability, the quantum fluctuations themselves exhibit bistability.
Our work provides to the best of our knowledge the first example of a provably bistable quantum optical system.
arXiv Detail & Related papers (2022-02-18T19:00:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Correlations beyond Entanglement and Discord [0.0]
We experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord.
We implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
arXiv Detail & Related papers (2020-10-07T15:52:20Z) - Efficient verification of Boson Sampling [0.0]
We derive an efficient protocol for verifying with single-mode Gaussian measurements the output states of a class of continuous-variable quantum circuits.
Our results also enable the efficient and reliable certification of a large class of intractable continuous-variable multimode quantum states.
arXiv Detail & Related papers (2020-06-05T15:55:21Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.