Exact bistability and time pseudo-crystallization of driven-dissipative
fermionic lattices
- URL: http://arxiv.org/abs/2202.09369v1
- Date: Fri, 18 Feb 2022 19:00:00 GMT
- Title: Exact bistability and time pseudo-crystallization of driven-dissipative
fermionic lattices
- Authors: Hadiseh Alaeian, Berislav Bu\v{c}a
- Abstract summary: We prove bistability in precisely the quantum fluctuations.
Surprisingly, rather than destroying bistability, the quantum fluctuations themselves exhibit bistability.
Our work provides to the best of our knowledge the first example of a provably bistable quantum optical system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existence of bistability in quantum optical systems remains a intensely
debated open question beyond the mean-field approximation. Quantum fluctuations
are finite-size corrections to the mean-field approximation used because the
full exact solution is unobtainable. Usually, quantum fluctuations destroy the
bistability present on the mean-field level. Here, by identifying and using
exact modulated semi-local dynamical symmetries in a certain quantum optical
models of driven-dissipative fermionic chains we exactly prove bistability in
precisely the quantum fluctuations. Surprisingly, rather than destroying
bistability, the quantum fluctuations themselves exhibit bistability, even
though it is absent on the mean-field level for our systems. Moreover, the
models studied acquire additional thermodynamic dynamical symmetries that imply
persistent periodic oscillations in the quantum fluctuations, constituting
pseudo-variants of boundary time crystals. Physically, these emergent operators
correspond to finite-frequency and finite-momentum semi-local Goldstone modes.
Our work therefore provides to the best of our knowledge the first example of a
provably bistable quantum optical system.
Related papers
- Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium [0.0]
We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
arXiv Detail & Related papers (2023-09-05T10:59:32Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Stability of quantum eigenstates and kinetics of wave function collapse
in a fluctuating environment [0.0]
The work analyzes the stability of the quantum eigenstates when they are submitted to fluctuations.
In the limit of sufficiently slow kinetics, the quantum eigenstates show to remain stationary configurations.
The work shows that the final stationary eigenstate depends by the initial configuration of the superposition of states.
arXiv Detail & Related papers (2020-11-25T10:41:53Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.