論文の概要: 3D Pose Estimation and Future Motion Prediction from 2D Images
- arxiv url: http://arxiv.org/abs/2111.13285v1
- Date: Fri, 26 Nov 2021 01:02:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 15:29:10.698172
- Title: 3D Pose Estimation and Future Motion Prediction from 2D Images
- Title(参考訳): 2次元画像からの3次元姿勢推定と将来の動き予測
- Authors: Ji Yang, Youdong Ma, Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng
- Abstract要約: 本稿では,3次元人物のポーズを推定し,RGB画像列から将来の3次元動作を予測するという,高相関な課題に共同で取り組むことを検討する。
リー代数のポーズ表現に基づいて、人間の運動キネマティクスを自然に保存する新しい自己投射機構が提案されている。
- 参考スコア(独自算出の注目度): 26.28886209268217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers to jointly tackle the highly correlated tasks of
estimating 3D human body poses and predicting future 3D motions from RGB image
sequences. Based on Lie algebra pose representation, a novel self-projection
mechanism is proposed that naturally preserves human motion kinematics. This is
further facilitated by a sequence-to-sequence multi-task architecture based on
an encoder-decoder topology, which enables us to tap into the common ground
shared by both tasks. Finally, a global refinement module is proposed to boost
the performance of our framework. The effectiveness of our approach, called
PoseMoNet, is demonstrated by ablation tests and empirical evaluations on
Human3.6M and HumanEva-I benchmark, where competitive performance is obtained
comparing to the state-of-the-arts.
- Abstract(参考訳): 本稿では,3次元人体のポーズ推定と,rgb画像から将来の3次元動作の予測という,高度に相関したタスクを共同で行うことを検討する。
リー代数のポーズ表現に基づいて、人間の運動キネマティクスを自然に保存する新しい自己投射機構が提案されている。
さらに、エンコーダ-デコーダトポロジに基づくシーケンス・ツー・シーケンスのマルチタスクアーキテクチャにより、両方のタスクで共有される共通グラウンドをタップできるようにする。
最後に,我々のフレームワークの性能を高めるため,グローバルな改良モジュールを提案する。
posemonet と呼ばれる手法の有効性は,人間3.6m および humaneva-i ベンチマークにおけるアブレーション試験および経験的評価により実証された。
関連論文リスト
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - EVOPOSE: A Recursive Transformer For 3D Human Pose Estimation With
Kinematic Structure Priors [72.33767389878473]
本研究では,3次元ポーズ推定を効果的に行うために,トランスフォーマーを用いたモデルEvoPoseを提案する。
構造的優先表現(Structure Priors Representation, SPR)モジュールは、人体パターンの豊富な構造的特徴として、人間の先行を表現している。
推定結果を利用して3Dポーズ出力にRecursive Refinement(RR)モジュールを印加し、同時に人間を注入する。
論文 参考訳(メタデータ) (2023-06-16T04:09:16Z) - Kinematic-aware Hierarchical Attention Network for Human Pose Estimation
in Videos [17.831839654593452]
従来の人間のポーズ推定手法は, 連続するフレームの特徴を活用することで, 有望な結果を示した。
ほとんどのアプローチでは、ジッターに精度を妥協し、人間の動きの時間的側面を理解しない。
キネマティックなキーポイント機能を利用するアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-11-29T01:46:11Z) - Jointformer: Single-Frame Lifting Transformer with Error Prediction and
Refinement for 3D Human Pose Estimation [11.592567773739407]
人間の3次元ポーズ推定技術は、人間の動きデータの可用性を大幅に向上させる可能性がある。
シングルイメージ2D-3Dリフトの最高の性能モデルは、通常、異なる体節間の関係を定義するために手動入力を必要とするグラフ畳み込みネットワーク(GCN)を使用する。
より一般化された自己認識機構を用いてこれらの関係を学習するトランスフォーマーに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-07T12:07:19Z) - Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation [1.1501261942096426]
2次元から3次元のポーズ推定のための初期残差接続を持つ高階グラフ畳み込みフレームワークを提案する。
我々のモデルは、体節間の長距離依存関係を捉えることができる。
2つの標準ベンチマークで行った実験と改善研究は、我々のモデルの有効性を実証した。
論文 参考訳(メタデータ) (2021-11-01T13:48:55Z) - Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [79.70127290464514]
我々は,タスクを2つの段階,すなわち人物のローカライゼーションとポーズ推定に分解する。
また,効率的なメッセージパッシングのための3つのタスク固有グラフニューラルネットワークを提案する。
提案手法は,CMU Panoptic と Shelf のデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2021-09-13T11:44:07Z) - HuMoR: 3D Human Motion Model for Robust Pose Estimation [100.55369985297797]
HuMoRは、時間的ポーズと形状のロバスト推定のための3Dヒューマンモーションモデルです。
モーションシーケンスの各ステップにおけるポーズの変化の分布を学習する条件付き変分オートエンコーダについて紹介する。
本モデルが大規模モーションキャプチャーデータセットのトレーニング後に多様な動きや体型に一般化することを示す。
論文 参考訳(メタデータ) (2021-05-10T21:04:55Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
大規模インスタディオデータセットの監視を用いて開発された人間のポーズ推定モデルの一般化可能性については疑問が残る。
本稿では,2対あるいは2対の弱い監督者によって抑制されない,新しいキネマティック構造保存型非教師付き3次元ポーズ推定フレームワークを提案する。
提案モデルでは,前方運動学,カメラ投影,空間マップ変換という3つの連続的な微分可能変換を用いる。
論文 参考訳(メタデータ) (2020-06-24T23:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。