論文の概要: Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation
- arxiv url: http://arxiv.org/abs/2111.00950v1
- Date: Mon, 1 Nov 2021 13:48:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 16:30:33.568205
- Title: Higher-Order Implicit Fairing Networks for 3D Human Pose Estimation
- Title(参考訳): 3次元人文推定のための高次インプシシトフェアリングネットワーク
- Authors: Jianning Quan and A. Ben Hamza
- Abstract要約: 2次元から3次元のポーズ推定のための初期残差接続を持つ高階グラフ畳み込みフレームワークを提案する。
我々のモデルは、体節間の長距離依存関係を捉えることができる。
2つの標準ベンチマークで行った実験と改善研究は、我々のモデルの有効性を実証した。
- 参考スコア(独自算出の注目度): 1.1501261942096426
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating a 3D human pose has proven to be a challenging task, primarily
because of the complexity of the human body joints, occlusions, and variability
in lighting conditions. In this paper, we introduce a higher-order graph
convolutional framework with initial residual connections for 2D-to-3D pose
estimation. Using multi-hop neighborhoods for node feature aggregation, our
model is able to capture the long-range dependencies between body joints.
Moreover, our approach leverages residual connections, which are integrated by
design in our network architecture, ensuring that the learned feature
representations retain important information from the initial features of the
input layer as the network depth increases. Experiments and ablations studies
conducted on two standard benchmarks demonstrate the effectiveness of our
model, achieving superior performance over strong baseline methods for 3D human
pose estimation.
- Abstract(参考訳): 人間の3Dポーズを推定することは、主に人体の関節の複雑さ、閉塞、照明条件の変動など、難しい課題であることが証明されている。
本稿では,2次元から3次元のポーズ推定のための初期残差接続を持つ高次グラフ畳み込みフレームワークを提案する。
ノード特徴の集約にマルチホップ近傍を用いることにより,体節間の長距離依存性を捉えることができる。
さらに,ネットワークアーキテクチャにおいて設計により統合された残差接続を活用し,ネットワーク深度が増大するにつれて,学習した特徴表現が入力層の初期特徴から重要な情報を保持することを保証する。
2つの標準ベンチマークで行った実験と改善研究は、我々のモデルの有効性を示し、3次元ポーズ推定のための強力なベースライン法よりも優れた性能を実現した。
関連論文リスト
- StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
本研究では,人間のメッシュと物体メッシュの表面から密にサンプリングされたアンカー間の人物体オフセットを用いて,人物体空間関係を表現することを提案する。
この表現に基づいて、画像から人・物間の空間関係の後方分布を推定するスタック正規化フロー(StackFLOW)を提案する。
最適化段階では、サンプルの可能性を最大化することにより、人体ポーズと物体6Dポーズを微調整する。
論文 参考訳(メタデータ) (2024-07-30T04:57:21Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
グラフ畳み込みネットワーク(GCN)は3次元人間のポーズ推定に有効な手法であることが証明されている。
本稿では,3次元ポーズ推定のための反復グラフフィルタリングフレームワークを提案する。
我々のアプローチは、ラプラシア正規化によるグラフフィルタリングを反復的に解くという考え方に基づいている。
論文 参考訳(メタデータ) (2023-07-29T20:46:44Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - 3D Pose Estimation and Future Motion Prediction from 2D Images [26.28886209268217]
本稿では,3次元人物のポーズを推定し,RGB画像列から将来の3次元動作を予測するという,高相関な課題に共同で取り組むことを検討する。
リー代数のポーズ表現に基づいて、人間の運動キネマティクスを自然に保存する新しい自己投射機構が提案されている。
論文 参考訳(メタデータ) (2021-11-26T01:02:00Z) - Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [79.70127290464514]
我々は,タスクを2つの段階,すなわち人物のローカライゼーションとポーズ推定に分解する。
また,効率的なメッセージパッシングのための3つのタスク固有グラフニューラルネットワークを提案する。
提案手法は,CMU Panoptic と Shelf のデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2021-09-13T11:44:07Z) - Graph Stacked Hourglass Networks for 3D Human Pose Estimation [1.0660480034605242]
2次元から3次元のポーズ推定タスクのための新しいグラフ畳み込みネットワークアーキテクチャであるgraph stacked hourglass networkを提案する。
提案アーキテクチャは,人間の骨格表現の3つの異なるスケールでグラフ構造化特徴を処理した繰り返しエンコーダデコーダで構成されている。
論文 参考訳(メタデータ) (2021-03-30T14:25:43Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
本稿では, 階層型多人数常連関係(HMOR)を新たに導入する。
HMORは相互作用情報を階層的に深さと角度の順序関係として符号化する。
統合トップダウンモデルは、学習プロセスにおけるこれらの順序関係を活用するように設計されている。
提案手法は, 公開されている多人数の3Dポーズデータセットにおいて, 最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-08-01T07:53:27Z) - Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View
Geometry [62.29762409558553]
マルチパーソナライズされた3次元ポーズ推定手法における特徴マッチングと深さ推定のコアは、エピポーラ制約である。
スパサーの群衆シーンにおけるこの定式化の良好なパフォーマンスにもかかわらず、その効果はより密集した群衆の状況下でしばしば挑戦される。
本稿では,マルチパーソン3次元ポーズ推定式から脱却し,群衆ポーズ推定として再編成する。
論文 参考訳(メタデータ) (2020-07-21T17:59:36Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
大規模インスタディオデータセットの監視を用いて開発された人間のポーズ推定モデルの一般化可能性については疑問が残る。
本稿では,2対あるいは2対の弱い監督者によって抑制されない,新しいキネマティック構造保存型非教師付き3次元ポーズ推定フレームワークを提案する。
提案モデルでは,前方運動学,カメラ投影,空間マップ変換という3つの連続的な微分可能変換を用いる。
論文 参考訳(メタデータ) (2020-06-24T23:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。