論文の概要: Optimal Technical Indicator-based Trading Strategies Using NSGA-II
- arxiv url: http://arxiv.org/abs/2111.13364v2
- Date: Tue, 25 Jan 2022 05:50:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 19:50:03.139902
- Title: Optimal Technical Indicator-based Trading Strategies Using NSGA-II
- Title(参考訳): NSGA-IIを用いた最適技術指標に基づく取引戦略
- Authors: P. Shanmukh Kali Prasad, Vadlamani Madhav, Ramanuj Lal and Vadlamani
Ravi
- Abstract要約: 本稿では,技術指標に基づく株式取引の文脈における非支配的ソート遺伝的アルゴリズム(NSGA-II)を提案する。
NSGA-IIは、非常に人気があり強力な双方向進化アルゴリズムであるため、選択される。
- 参考スコア(独自算出の注目度): 3.773653335175799
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes non-dominated sorting genetic algorithm-II (NSGA-II ) in
the context of technical indicator-based stock trading, by finding optimal
combinations of technical indicators to generate buy and sell strategies such
that the objectives, namely, Sharpe ratio and Maximum Drawdown are maximized
and minimized respectively. NSGA-II is chosen because it is a very popular and
powerful bi-objective evolutionary algorithm. The training and testing used a
rolling-based approach (two years training and a year for testing) and thus the
results of the approach seem to be considerably better in stable periods
without major economic fluctuations. Further, another important contribution of
this study is to incorporate the transaction cost and domain expertise in the
whole modeling approach.
- Abstract(参考訳): 本稿では,技術指標に基づく株式取引の文脈における非支配的ソート遺伝的アルゴリズム-II(NSGA-II)を提案する。
NSGA-IIは、非常に人気があり強力な双方向進化アルゴリズムであるため、選択される。
トレーニングとテストは、ローリングベースのアプローチ(2年間のトレーニングと1年間のテスト)を使用しており、そのアプローチの結果は、大きな経済変動のない安定した期間において、かなり良いように思われる。
さらに、この研究の重要な貢献は、全体のモデリングアプローチにトランザクションコストとドメインの専門知識を組み込むことである。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Dynamic Portfolio Rebalancing: A Hybrid new Model Using GNNs and Pathfinding for Cost Efficiency [0.0]
本稿では,取引コストを予測するグラフニューラルネットワーク(GNN)と,コスト効率の高いリバランスパスを特定するDijkstraのアルゴリズムを統合することで,ポートフォリオのリバランスを最適化する新たなアプローチを提案する。
実証的な結果は、このハイブリッドアプローチが取引コストを大幅に削減し、ポートフォリオマネージャに強力なツールを提供することを示している。
論文 参考訳(メタデータ) (2024-10-02T11:00:52Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
本研究は,グラフクラスタリングアルゴリズムに基づく統計仲裁の新しい枠組みに基づく効果的な戦略の開発を目指す。
この研究は、最適な信号検出とリスク管理のための統合的なアプローチを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-15T17:25:32Z) - Analysis of frequent trading effects of various machine learning models [8.975239844705415]
提案アルゴリズムでは,ニューラルネットワーク予測を用いてトレーディング信号を生成し,売買操作を実行する。
ニューラルネットワークのパワーを活用することで、アルゴリズムはトレーディング戦略の正確性と信頼性を高める。
論文 参考訳(メタデータ) (2023-09-14T05:17:09Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
我々は,新しいtextscAdmeta(textbfADouble指数textbfMov averagtextbfE textbfAdaptiveおよび非適応運動量)フレームワークを提案する。
我々は、textscAdmetaR と textscAdmetaS の2つの実装を提供し、前者は RAdam を、後者は SGDM をベースとしています。
論文 参考訳(メタデータ) (2023-07-02T18:16:06Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method
for RoboTrading [0.4568777157687961]
外国為替は世界最大の金融市場である。
ほとんどの文献は、歴史的価格情報と技術指標を訓練に用いた。
この問題に対処するため,我々は,技術指標と取引規則から派生した取引規則の特徴を設計した。
論文 参考訳(メタデータ) (2020-08-16T05:33:35Z) - An Application of Deep Reinforcement Learning to Algorithmic Trading [4.523089386111081]
本稿では, 深部強化学習(DRL)に基づくアルゴリズム取引問題の解法を提案する。
幅広い株式市場でシャープ比のパフォーマンス指標を最大化するために、新しいDRLトレーディング戦略を提案する。
得られた強化学習 (RL) エージェントのトレーニングは, 限られた市場履歴データから人工軌道を生成することに基づいている。
論文 参考訳(メタデータ) (2020-04-07T14:57:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。