論文の概要: An Application of Deep Reinforcement Learning to Algorithmic Trading
- arxiv url: http://arxiv.org/abs/2004.06627v3
- Date: Fri, 9 Oct 2020 12:09:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 23:21:28.008623
- Title: An Application of Deep Reinforcement Learning to Algorithmic Trading
- Title(参考訳): 深層強化学習のアルゴリズム取引への応用
- Authors: Thibaut Th\'eate, Damien Ernst
- Abstract要約: 本稿では, 深部強化学習(DRL)に基づくアルゴリズム取引問題の解法を提案する。
幅広い株式市場でシャープ比のパフォーマンス指標を最大化するために、新しいDRLトレーディング戦略を提案する。
得られた強化学習 (RL) エージェントのトレーニングは, 限られた市場履歴データから人工軌道を生成することに基づいている。
- 参考スコア(独自算出の注目度): 4.523089386111081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This scientific research paper presents an innovative approach based on deep
reinforcement learning (DRL) to solve the algorithmic trading problem of
determining the optimal trading position at any point in time during a trading
activity in stock markets. It proposes a novel DRL trading strategy so as to
maximise the resulting Sharpe ratio performance indicator on a broad range of
stock markets. Denominated the Trading Deep Q-Network algorithm (TDQN), this
new trading strategy is inspired from the popular DQN algorithm and
significantly adapted to the specific algorithmic trading problem at hand. The
training of the resulting reinforcement learning (RL) agent is entirely based
on the generation of artificial trajectories from a limited set of stock market
historical data. In order to objectively assess the performance of trading
strategies, the research paper also proposes a novel, more rigorous performance
assessment methodology. Following this new performance assessment approach,
promising results are reported for the TDQN strategy.
- Abstract(参考訳): 本研究は,市場における取引活動中の任意の時点における最適な取引位置を決定するアルゴリズム的トレーディング問題を解決するために,深層強化学習(DRL)に基づく革新的なアプローチを提案する。
幅広い株式市場におけるシャープ比パフォーマンス指標を最大化するために、新たなdrl取引戦略を提案する。
トレーディング深層q-networkアルゴリズム(tdqn)を例にとると、この新しいトレーディング戦略は人気のあるdqnアルゴリズムに触発され、手元にある特定のアルゴリズム的トレーディング問題にかなり適応している。
得られた強化学習(rl)エージェントの訓練は、限られた株式市場の履歴データから人工的軌道の生成に完全に基づいている。
本研究は,貿易戦略の性能を客観的に評価するために,より厳密な業績評価手法を提案する。
新しいパフォーマンスアセスメントアプローチに従って、tdqn戦略に有望な結果が報告される。
関連論文リスト
- Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for Optimizing Stock Selection and Execution [0.9553307596675155]
本稿では,階層強化学習フレームワークを用いた新たなトレーディング戦略である階層強化トレーサ(HRT)を紹介する。
HRTは、戦略的株式選択のためのPPO(Proximal Policy Optimization)ベースのHigh-Level Controller(HLC)をDDPG(Deep Deterministic Policy Gradient)ベースのLow-Level Controller(LLC)と統合する。
論文 参考訳(メタデータ) (2024-10-19T01:29:38Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
本稿では,動的な金融市場における非マルコフ的最適実行戦略の学習に挑戦する。
我々は,Deep Deterministic Policy Gradient(DDPG)に基づく新しいアクター批判アルゴリズムを提案する。
提案アルゴリズムは最適実行戦略の近似に成功していることを示す。
論文 参考訳(メタデータ) (2024-10-17T12:38:08Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market [0.0]
本研究は,グラフクラスタリングアルゴリズムに基づく統計仲裁の新しい枠組みに基づく効果的な戦略の開発を目指す。
この研究は、最適な信号検出とリスク管理のための統合的なアプローチを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-15T17:25:32Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Analysis of frequent trading effects of various machine learning models [8.975239844705415]
提案アルゴリズムでは,ニューラルネットワーク予測を用いてトレーディング信号を生成し,売買操作を実行する。
ニューラルネットワークのパワーを活用することで、アルゴリズムはトレーディング戦略の正確性と信頼性を高める。
論文 参考訳(メタデータ) (2023-09-14T05:17:09Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
強化学習(Reinforcement Learning、RL)は、エージェントが環境と対話することで学習する機械学習の分野である。
本稿では,HFT(High-Frequency Trading)シナリオに適した統計仲裁手法におけるRLの統合について述べる。
広範なシミュレーションやバックテストを通じて、RLはトレーディング戦略の適応性を高めるだけでなく、収益性指標の改善やリスク調整されたリターンの期待も示している。
論文 参考訳(メタデータ) (2023-09-13T06:15:40Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
強化学習技術は量的取引において顕著な成功を収めた。
既存のRLベースのマーケットメイキング手法のほとんどは、単価レベルの戦略の最適化に重点を置いている。
Imitative Market Maker (IMM) は、準最適信号に基づく専門家の知識と直接的な政策相互作用の両方を活用する新しいRLフレームワークである。
論文 参考訳(メタデータ) (2023-08-17T11:04:09Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
本稿では,不完全な市場状態と注文実行のための最適な行動シーケンスとのギャップを埋める,新たなユニバーサル取引ポリシー最適化フレームワークを提案する。
本研究の枠組みは,完全情報を持つ託宣教師による実践的最適実行に向けて,共通政策の学習を指導する上で有効であることを示す。
論文 参考訳(メタデータ) (2021-01-28T05:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。