Soliciting User Preferences in Conversational Recommender Systems via
Usage-related Questions
- URL: http://arxiv.org/abs/2111.13463v1
- Date: Fri, 26 Nov 2021 12:23:14 GMT
- Title: Soliciting User Preferences in Conversational Recommender Systems via
Usage-related Questions
- Authors: Ivica Kostric and Krisztian Balog and Filip Radlinski
- Abstract summary: We propose a novel approach to preference elicitation by asking implicit questions based on item usage.
First, we identify the sentences from a large review corpus that contain information about item usage.
Then, we generate implicit preference elicitation questions from those sentences using a neural text-to-text model.
- Score: 21.184555512370093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key distinguishing feature of conversational recommender systems over
traditional recommender systems is their ability to elicit user preferences
using natural language. Currently, the predominant approach to preference
elicitation is to ask questions directly about items or item attributes. These
strategies do not perform well in cases where the user does not have sufficient
knowledge of the target domain to answer such questions. Conversely, in a
shopping setting, talking about the planned use of items does not present any
difficulties, even for those that are new to a domain. In this paper, we
propose a novel approach to preference elicitation by asking implicit questions
based on item usage. Our approach consists of two main steps. First, we
identify the sentences from a large review corpus that contain information
about item usage. Then, we generate implicit preference elicitation questions
from those sentences using a neural text-to-text model. The main contributions
of this work also include a multi-stage data annotation protocol using
crowdsourcing for collecting high-quality labeled training data for the neural
model. We show that our approach is effective in selecting review sentences and
transforming them to elicitation questions, even with limited training data.
Additionally, we provide an analysis of patterns where the model does not
perform optimally.
Related papers
- Personalized Topic Selection Model for Topic-Grounded Dialogue [24.74527189182273]
Current models tend to predict user-uninteresting and contextually irrelevant topics.
We propose a textbfPersonalized topic stextbfElection model for textbfTopic-grounded textbfDialogue, named textbfPETD.
Our proposed method can generate engaging and diverse responses, outperforming state-of-the-art baselines.
arXiv Detail & Related papers (2024-06-04T06:09:49Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
Our model iteratively selects or synthesizes a data-point according to one of a range of information-theoretic policies.
We find that the information-theoretic policies that our model uses to select items to query the informant achieve sample efficiency comparable to, or greater than, fully supervised approaches.
arXiv Detail & Related papers (2024-05-08T00:18:56Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - Hierarchical Conversational Preference Elicitation with Bandit Feedback [36.507341041113825]
We formulate a new conversational bandit problem that allows the recommender system to choose either a key-term or an item to recommend at each round.
We conduct a survey and analyze a real-world dataset to find that, unlike assumptions made in prior works, key-term rewards are mainly affected by rewards of representative items.
We propose two bandit algorithms, Hier-UCB and Hier-LinUCB, that leverage this observed relationship and the hierarchical structure between key-terms and items.
arXiv Detail & Related papers (2022-09-06T05:35:24Z) - Graph-based Extractive Explainer for Recommendations [38.278148661173525]
We develop a graph attentive neural network model that seamlessly integrates user, item, attributes, and sentences for extraction-based explanation.
To balance individual sentence relevance, overall attribute coverage, and content redundancy, we solve an integer linear programming problem to make the final selection of sentences.
arXiv Detail & Related papers (2022-02-20T04:56:10Z) - Conversational Search with Mixed-Initiative -- Asking Good Clarification
Questions backed-up by Passage Retrieval [9.078765961879467]
We deal with a scenario of conversational search with mixed-initiative: namely user-asks system-answers, as well as system-asks (clarification questions) and user-answers.
We focus on the task of selecting the next clarification question, given conversation context.
Our method leverages passage retrieval that is used both for an initial selection of relevant candidate clarification questions, as well as for fine-tuning two deep-learning models for re-ranking these candidates.
arXiv Detail & Related papers (2021-12-14T11:27:16Z) - Learning to Ask Appropriate Questions in Conversational Recommendation [49.31942688227828]
We propose the Knowledge-Based Question Generation System (KBQG), a novel framework for conversational recommendation.
KBQG models a user's preference in a finer granularity by identifying the most relevant relations from a structured knowledge graph.
Finially, accurate recommendations can be generated in fewer conversational turns.
arXiv Detail & Related papers (2021-05-11T03:58:10Z) - Interactive Question Clarification in Dialogue via Reinforcement
Learning [36.746578601398866]
We propose a reinforcement model to clarify ambiguous questions by suggesting refinements of the original query.
The model is trained using reinforcement learning with a deep policy network.
We evaluate our model based on real-world user clicks and demonstrate significant improvements.
arXiv Detail & Related papers (2020-12-17T06:38:04Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.