論文の概要: QMagFace: Simple and Accurate Quality-Aware Face Recognition
- arxiv url: http://arxiv.org/abs/2111.13475v1
- Date: Fri, 26 Nov 2021 12:44:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 15:28:55.912277
- Title: QMagFace: Simple and Accurate Quality-Aware Face Recognition
- Title(参考訳): QMagFace: シンプルで正確な品質認識
- Authors: Philipp Terh\"orst, Malte Ihlefeld, Marco Huber, Naser Damer, Florian
Kirchbuchner, Kiran Raja, Arjan Kuijper
- Abstract要約: そこで本研究では,品質を考慮した比較スコアと,等級認識の角縁損失に基づく認識モデルを組み合わせた,簡便で効果的な顔認識ソリューション(QMagFace)を提案する。
提案手法は、制約のない状況下での認識性能を高めるために、比較過程におけるモデル固有の顔画像品質を含む。
いくつかの顔認識データベースとベンチマークで実施された実験は、導入された品質認識が認識性能を一貫した改善をもたらすことを示した。
- 参考スコア(独自算出の注目度): 5.5284501467256515
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Face recognition systems have to deal with large variabilities (such as
different poses, illuminations, and expressions) that might lead to incorrect
matching decisions. These variabilities can be measured in terms of face image
quality which is defined over the utility of a sample for recognition. Previous
works on face recognition either do not employ this valuable information or
make use of non-inherently fit quality estimates. In this work, we propose a
simple and effective face recognition solution (QMagFace) that combines a
quality-aware comparison score with a recognition model based on a
magnitude-aware angular margin loss. The proposed approach includes
model-specific face image qualities in the comparison process to enhance the
recognition performance under unconstrained circumstances. Exploiting the
linearity between the qualities and their comparison scores induced by the
utilized loss, our quality-aware comparison function is simple and highly
generalizable. The experiments conducted on several face recognition databases
and benchmarks demonstrate that the introduced quality-awareness leads to
consistent improvements in the recognition performance. Moreover, the proposed
QMagFace approach performs especially well under challenging circumstances,
such as cross-pose, cross-age, or cross-quality. Consequently, it leads to
state-of-the-art performances on several face recognition benchmarks, such as
98.50% on AgeDB, 83.97% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace
is publicly available.
- Abstract(参考訳): 顔認識システムは、不正確なマッチング決定につながる可能性のある大きな変動(ポーズ、照度、表現など)に対処する必要がある。
これらの変動は、認識のためのサンプルの有用性によって定義される顔画像品質の観点から測定することができる。
顔認識に関する以前の研究は、この貴重な情報を使用しないか、あるいは不連続に品質推定に適合しないかのどちらかである。
本研究では,クオリティ・アウェア比較スコアと,マグニチュード・アウェア角マージン損失に基づく認識モデルを組み合わせた,簡便で効果的な顔認識ソリューション(qmagface)を提案する。
提案手法は、制約のない状況下での認識性能を高めるために、比較過程におけるモデル固有の顔画像品質を含む。
使用損失による品質と比較スコアの線形性を利用すると,品質認識比較関数は単純かつ高一般化できる。
いくつかの顔認識データベースとベンチマークで実施された実験は、導入された品質認識が認識性能を一貫した改善をもたらすことを示した。
さらに,提案するqmagfaceアプローチは,クロスポーズやクロスエイジ,クロスクオリティといった困難な状況下では特に良好に機能する。
その結果、顔認識ベンチマークでは98.50%がageb、83.97%がxqlfq、98.74%がcfp-fpであった。
QMagFaceのコードは公開されている。
関連論文リスト
- Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
顔スワップ法における品質測定の基準は、操作された画像とソース画像の間のいくつかの距離に依存する。
顔スワップ用に設計された新しい非参照画像品質評価法(NR-IQA)を提案する。
論文 参考訳(メタデータ) (2024-06-04T01:36:29Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
ブラインド画像品質評価(BIQA)は、参照情報なしで画像品質の人間の知覚を予測する。
我々は,他のタスクからの補助的知識を活用するために,BIQAのための汎用的かつ自動化されたマルチタスク学習手法を開発した。
論文 参考訳(メタデータ) (2023-03-27T07:58:09Z) - FaceQAN: Face Image Quality Assessment Through Adversarial Noise
Exploration [1.217503190366097]
本稿では,顔画像品質評価手法であるFaceQANを提案する。
このようにして,画像品質を敵攻撃にリンクする手法が提案されている。
実験の結果,FaceQANはいくつかの望ましい特徴を示しながら,競争的な結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-12-05T09:37:32Z) - AdaFace: Quality Adaptive Margin for Face Recognition [56.99208144386127]
本稿では、損失関数、すなわち画像品質における適応性の別の側面を紹介する。
そこで本稿では,画像品質に基づいて異なる難易度を示す新たな損失関数を提案する。
提案手法は,4つのデータセット上でのSoTA(State-of-the-art)による顔認識性能を向上させる。
論文 参考訳(メタデータ) (2022-04-03T01:23:41Z) - FaceQgen: Semi-Supervised Deep Learning for Face Image Quality
Assessment [19.928262020265965]
FaceQgenは、ジェネレーティブ・アドバイサル・ネットワークに基づく顔画像の非参照品質評価手法である。
顔認識精度に関連するスカラー品質尺度を生成する。
SCfaceデータベースを使用して、スクラッチからトレーニングされる。
論文 参考訳(メタデータ) (2022-01-03T17:22:38Z) - Pixel-Level Face Image Quality Assessment for Explainable Face
Recognition [5.858033242850427]
認識のための顔画像における画素の有効性を決定する画素レベルの顔画像品質の概念を導入する。
本研究では,任意の顔認識ネットワークが与えられた場合,顔画像の画素レベルの品質を評価するためのトレーニング不要なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-21T09:12:17Z) - Cross-Quality LFW: A Database for Analyzing Cross-Resolution Image Face
Recognition in Unconstrained Environments [8.368543987898732]
現実世界の顔認識アプリケーションは、異なるキャプチャ条件のために、最適な画像の品質や解像度を扱うことが多い。
最近のクロスレゾリューション顔認識手法は、画像品質における現実のエッジケースとの距離を測定するために、単純で任意で非現実的なダウンスケールとアップスケーリングの手法を用いている。
本稿では,Wildにおける有名なラベル付き顔から派生した,新しい標準ベンチマークデータセットと評価プロトコルを提案する。
論文 参考訳(メタデータ) (2021-08-23T17:04:32Z) - Harnessing Unrecognizable Faces for Face Recognition [87.80037162457427]
本稿では,顔画像の認識可能性の尺度を提案し,主に認識可能なアイデンティティを用いて訓練されたディープニューラルネットワークによって実現された。
FAR=1e-5において,認識可能性を考慮した場合,単画像認識の誤り率を58%減少させることを示す。
論文 参考訳(メタデータ) (2021-06-08T05:25:03Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
顔画像の「マッドペア」から画像品質訓練データを自動的に生成する手法を提案する。
生成したデータを用いて、顔画像の信頼度を推定するために、PCNetと呼ばれる軽量な予測信頼ネットワークを訓練する。
論文 参考訳(メタデータ) (2020-09-01T17:52:00Z) - SER-FIQ: Unsupervised Estimation of Face Image Quality Based on
Stochastic Embedding Robustness [15.431761867166]
任意の顔認識モデルに基づいて顔の質を測定する新しい概念を提案する。
提案手法を,学界と産業界からの6つの最先端アプローチと比較した。
論文 参考訳(メタデータ) (2020-03-20T16:50:30Z) - On the Robustness of Face Recognition Algorithms Against Attacks and
Bias [78.68458616687634]
顔認識アルゴリズムは非常に高い認識性能を示しており、現実のアプリケーションに適していることを示唆している。
精度が向上したにもかかわらず、これらのアルゴリズムの攻撃や偏見に対する堅牢性は問題視されている。
本稿では,顔認識アルゴリズムの頑健性に挑戦する様々な方法について要約する。
論文 参考訳(メタデータ) (2020-02-07T18:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。