論文の概要: Forecasting Daily COVID-19 Related Calls in VA Health Care System:
Predictive Model Development
- arxiv url: http://arxiv.org/abs/2111.13980v2
- Date: Tue, 30 Nov 2021 05:29:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 11:17:58.922711
- Title: Forecasting Daily COVID-19 Related Calls in VA Health Care System:
Predictive Model Development
- Title(参考訳): va医療システムにおける毎日のcovid-19関連コールの予測--予測モデル開発
- Authors: Weipeng Zhou, Ryan J. Laundry, Paul L. Hebert, Gang Luo
- Abstract要約: 本研究は,110カ所の医療センターに対して,毎日の新型コロナウイルス関連コール数を予測する手法を開発することを目的とする。
提案手法では,医療センターの集合体を用いてモデルを事前訓練し,個別の医療センター向けに微調整した。
- 参考スコア(独自算出の注目度): 1.1011268090482575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: COVID-19 has become a challenge worldwide and properly planning
of medical resources is the key to combating COVID-19. In the US Veteran
Affairs Health Care System (VA), many of the enrollees are susceptible to
COVID-19. Predicting the COVID-19 to allocate medical resources promptly
becomes a critical issue. When the VA enrollees have COVID-19 symptoms, it is
recommended that their first step should be to call the VA Call Center. For
confirmed COVID-19 patients, the median time from the first symptom to hospital
admission was seven days. By predicting the number of COVID-19 related calls,
we could predict imminent surges in healthcare use and plan medical resources
ahead. Objective: The study aims to develop a method to forecast the daily
number of COVID-19 related calls for each of the 110 VA medical centers.
Methods: In the proposed method, we pre-trained a model using a cluster of
medical centers and fine-tuned it for individual medical centers. At the
cluster level, we performed feature selection to select significant features
and automatic hyper-parameter search to select optimal hyper-parameter value
combinations for the model. Conclusions: This study proposed an accurate method
to forecast the daily number of COVID-19 related calls for VA medical centers.
The proposed method was able to overcome modeling challenges by grouping
similar medical centers into clusters to enlarge the dataset for training
models, and using hyper-parameter search to automatically find optimal
hyper-parameter value combinations for models. With the proposed method, surges
in health care can be predicted ahead. This allows health care practitioners to
better plan medical resources and combat COVID-19.
- Abstract(参考訳): 背景:covid-19は世界中で課題となり、医療資源の適切な計画がcovid-19対策の鍵となっている。
アメリカ退役軍人保健医療システム(VA)では、多くの入学者が新型コロナウイルスに罹患している。
新型コロナウイルス(COVID-19)が医療資源の割り当てを急ぐことが重要な問題となっている。
VA登録者が新型コロナウイルスの症状を患う場合、その最初のステップはVAコールセンターを呼び出すことだと推奨されている。
感染が確認された患者は、最初の症状から入院までの中央値は7日間であった。
新型コロナウイルス関連の電話の数を予測することで、医療利用の急激な急増を予測し、今後の医療資源を計画できる。
目的: 本研究の目的は, 医療センター110カ所の1日当たりの新型コロナウイルス関連呼出数を予測する方法の開発である。
方法: 提案手法では, 医療センターのクラスタを用いてモデルを事前訓練し, 個別の医療センター向けに微調整した。
クラスタレベルでは,重要な特徴の選択とハイパーパラメータの自動探索を行い,モデルに最適なハイパーパラメータ値の組み合わせを選択する。
結論:本研究は,va医療センターにおけるcovid-19関連電話の日数を予測するための正確な方法を提案する。
提案手法は、類似の医療センターをクラスタにグループ化してトレーニングモデルのデータセットを拡大し、ハイパーパラメータ検索を用いてモデルに対する最適なハイパーパラメータ値の組み合わせを自動的に見つけることによって、モデリングの課題を克服する。
提案手法では, 今後, 医療の急増を予測できる。
これにより、医療従事者は医療資源の計画を改善し、covid-19と闘うことができる。
関連論文リスト
- CoVScreen: Pitfalls and recommendations for screening COVID-19 using Chest X-rays [1.0878040851637998]
新型コロナウイルス(COVID-19)は、SARS-CoV-2による感染性の高い呼吸器疾患で、前例のない医療危機となっている。
症状のある患者の早期スクリーニングと診断は、地域感染を止めるために患者を隔離する上で重要な役割を担っている。
アクセシビリティ、可用性、低コスト、衛生の容易さ、ポータブルなセットアップのため、胸部X線撮影は効果的なスクリーニングおよび診断ツールとして機能する。
論文 参考訳(メタデータ) (2024-05-13T12:03:15Z) - MEDNC: Multi-ensemble deep neural network for COVID-19 diagnosis [29.909378035039214]
我々は,CT画像を用いた新型コロナウイルスの自動予測と診断のための深層学習フレームワークMEDNCを提案する。
当社のモデルは、COVID-19データの公開セットを2つ使用してトレーニングされました。
その結果、MEDNCは新型コロナウイルス感染症の検出を大幅に強化し、それぞれ98.79%と99.82%の精度に達した。
論文 参考訳(メタデータ) (2023-04-25T20:26:05Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - COVID-19 Hospitalizations Forecasts Using Internet Search Data [4.748730334762718]
先程提案したインフルエンザ追跡モデルであるARGOを拡張し,今後2週間の全国および州レベルの新規入院を予測した。
本手法は,新型コロナウイルスの予測ハブから収集した最良の代替モデルに対して,平均15%のエラー削減を実現する。
論文 参考訳(メタデータ) (2022-02-03T21:56:20Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report
Generation With Alternate Learning [70.71564065885542]
本稿では,医療用ビジュアル言語BERT(Medical-VLBERT)モデルを用いて,新型コロナウイルススキャンの異常を同定する。
このモデルは、知識事前学習と伝達の2つの手順で、代替的な学習戦略を採用する。
COVID-19患者に対する医療報告の自動作成のために,中国語で368例,胸部CTで1104例の検診を行った。
論文 参考訳(メタデータ) (2021-08-11T07:12:57Z) - Predicting special care during the COVID-19 pandemic: A machine learning
approach [0.0]
本稿では,患者が特別なケアを必要としているかどうかを予測するため,統計と機械学習に基づく分析手法を提案する。
また、患者がそのようなケアを受ける日数も予測する。
分析的アプローチは、他の疾患で使用することができ、病院の容量を計画するのに役立つ。
論文 参考訳(メタデータ) (2020-11-06T00:18:27Z) - Accelerating COVID-19 Differential Diagnosis with Explainable Ultrasound
Image Analysis [7.471424290647929]
われわれは106本のビデオからなる新型コロナウイルスの肺超音波(US)データセットを公開している。
我々は、フレームベースの畳み込みニューラルネットワークを提案し、COVID-19 USビデオの感度0.98+0.04、特異度0.91+-08で正しく分類する。
論文 参考訳(メタデータ) (2020-09-13T23:52:03Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。