Free Electrons Can Induce Entanglement Between Photons
- URL: http://arxiv.org/abs/2111.14181v1
- Date: Sun, 28 Nov 2021 15:42:20 GMT
- Title: Free Electrons Can Induce Entanglement Between Photons
- Authors: Gefen Baranes, Ron Ruimy, Alexey Gorlach, and Ido Kaminer
- Abstract summary: Entanglement of photons is a fundamental feature of quantum mechanics.
Recent developments in electron microscopy enable to control the quantum interaction between free electrons and light.
We show that free electrons can create entanglement and bunching of light.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Entanglement of photons is a fundamental feature of quantum mechanics, which
stands at the core of quantum technologies such as photonic quantum computing,
communication, and sensing. An ongoing challenge in all these is finding an
efficient and controllable mechanism to entangle photons. Recent experimental
developments in electron microscopy enable to control the quantum interaction
between free electrons and light. Here, we show that free electrons can create
entanglement and bunching of light. Free electrons can control the second-order
coherence of initially independent photonic states, even in spatially separated
cavities that cannot directly interact. Free electrons thus provide a type of
optical nonlinearity that acts in a nonlocal manner, offering a new way of
heralding the creation of entanglement. Intriguingly, pre-shaping the
electron's wavefunction provides the knob for tuning the photonic quantum
correlations. The concept can be generalized to entangle not only photons but
also photonic quasiparticles such as plasmon-polaritons and phonons.
Related papers
- Quantum Optics with Recoiled Free Electrons [0.0]
We show how to generate photon and electron-photon Bell, Greenberger-Horne-Zeilinger (GHZ) and NOON states, coherent states, squeezed vacuum (including bright squeezed vacuum) and twin beams.
We predict a new class of photon and electron-photon quantum states shaped with the photon recoil effect (recoil-induced shaping)
These results have wide potential applications including quantum computing and communication with photons and free electrons, and open up a novel avenue for ultrafast electron microscopy and next-generation free-electron sources.
arXiv Detail & Related papers (2024-05-10T16:02:40Z) - Strong coupling and single-photon nonlinearity in free-electron quantum optics [0.1874930567916036]
"Free-electron fibers" are one-dimensional photonic systems where free electrons co-propagate with two guided modes.
We predict a few interesting observable quantum effects in our system, such as deterministic single-photon emission and complex, nonlinear multimode dynamics.
arXiv Detail & Related papers (2024-03-19T18:05:56Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Multi-photon electron emission with non-classical light [52.77024349608834]
We present measurements of electron number-distributions from metal needle tips illuminated with ultrashort light pulses of different photon quantum statistics.
Changing the number of modes of the exciting bright squeezed vacuum light, we can tailor the electron-number distribution on demand.
arXiv Detail & Related papers (2023-07-26T12:35:03Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Imprinting the quantum statistics of photons on free electrons [0.15274583259797847]
We observe quantum statistics effects of photons on free-electron-light interactions.
We demonstrate interactions passing continuously from Poissonian to super-Poissonian and up to thermal statistics.
Our findings suggest free-electron-based non-destructive quantum tomography of light, and constitute an important step towards combined atto-second and sub-A-spatial resolution microscopy.
arXiv Detail & Related papers (2021-05-07T08:16:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Ultrafast non-destructive measurement of the quantum state of light
using free electrons [0.0]
We propose using free electrons for quantum-optical detection of the complete quantum state of light.
We show how the precise control of the electron before and after its interaction with quantum light enables to extract the photon statistics.
Our work paves the way to novel kinds of photodetectors that utilize the ultrafast duration, high nonlinearity, and non-destructive nature of electron-light interactions.
arXiv Detail & Related papers (2020-12-22T14:59:31Z) - Shaping Quantum Photonic States Using Free Electrons [0.0]
We explore the shaping of photon statistics using the quantum interactions of free electrons with photons in optical cavities.
We find a variety of quantum states of light that can be generated by a judicious choice of the input light and electron states.
By exploiting the degrees of freedom of arbitrary electron-photon quantum states, we may achieve complete control over the statistics and correlations of output photonic states.
arXiv Detail & Related papers (2020-11-02T20:59:44Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.