論文の概要: A Survey of Large-Scale Deep Learning Serving System Optimization:
Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2111.14247v1
- Date: Sun, 28 Nov 2021 22:14:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 07:04:57.589347
- Title: A Survey of Large-Scale Deep Learning Serving System Optimization:
Challenges and Opportunities
- Title(参考訳): 大規模ディープラーニングサービングシステムの最適化に関する調査--課題と機会
- Authors: Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Xulong Tang,
Chenchen Liu, Xiang Chen
- Abstract要約: サーベイは、大規模ディープラーニングサービスシステムにおける新たな課題と最適化の機会を要約し、分類することを目的としている。
ディープラーニング(DL)モデルは、ビジョン、言語、医療、商業広告、エンターテイメントなど、多くのアプリケーション領域で優れたパフォーマンスを実現しています。
- 参考スコア(独自算出の注目度): 24.38071862662089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) models have achieved superior performance in many
application domains, including vision, language, medical, commercial ads,
entertainment, etc. With the fast development, both DL applications and the
underlying serving hardware have demonstrated strong scaling trends, i.e.,
Model Scaling and Compute Scaling, for example, the recent pre-trained model
with hundreds of billions of parameters with ~TB level memory consumption, as
well as the newest GPU accelerators providing hundreds of TFLOPS. With both
scaling trends, new problems and challenges emerge in DL inference serving
systems, which gradually trends towards Large-scale Deep learning Serving
systems (LDS). This survey aims to summarize and categorize the emerging
challenges and optimization opportunities for large-scale deep learning serving
systems. By providing a novel taxonomy, summarizing the computing paradigms,
and elaborating the recent technique advances, we hope that this survey could
shed light on new optimization perspectives and motivate novel works in
large-scale deep learning system optimization.
- Abstract(参考訳): ディープラーニング(DL)モデルは、ビジョン、言語、医療、商業広告、エンターテイメントなど、多くのアプリケーション領域で優れたパフォーマンスを実現しています。
高速な開発により、DLアプリケーションと基盤となるサービスハードウェアの両方が強力なスケーリングトレンドを示している。例えば、モデルスケーリングとCompute Scalingは、数十億のパラメータとTBレベルのメモリ消費を持つ最近の事前トレーニングされたモデルと、数百のTFLOPSを提供する最新のGPUアクセラレータである。
スケーリングの傾向とともに、DL推論サービスシステムに新たな問題と課題が出現し、徐々に大規模ディープラーニングサービングシステム(LDS)へと移行する。
本調査は,大規模ディープラーニングサービスシステムの新たな課題と最適化機会を要約し,分類することを目的とする。
新たな分類学を提供し,計算パラダイムを要約し,最近の技術進歩を概説することによって,本調査が新たな最適化の視点に光を当て,大規模深層学習システム最適化における新たな研究を動機付けることを期待する。
関連論文リスト
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation [20.851925464903804]
本稿では,リコメンデーションモデルに適した新しい学習パラダイムであるDynamic Sparse Learningを紹介する。
DSLは革新的に、スクラッチから軽量スパースモデルをトレーニングし、各ウェイトの重要性を定期的に評価し、動的に調整する。
実験結果は、DSLの有効性を裏付け、トレーニングと推論のコストを大幅に削減し、同等のレコメンデーションパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-02-05T10:16:20Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
ジェネレーティブAI、コンピュータビジョン、自然言語処理は、AIモデルをさまざまな製品に統合するきっかけとなった。
本調査は,大規模ディープラーニングサービスシステムにおける新たな課題と最適化の機会を要約し,分類することを目的としている。
論文 参考訳(メタデータ) (2023-11-22T18:46:05Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
ディープラーニングの分野は特にコンピュータビジョン(CV)、自然言語処理(NLP)、音声などにおいて大きな進歩を遂げている。
大量のデータに基づいてトレーニングされた大規模なモデルを使用することは、実用的なアプリケーションにとって大きな可能性を秘めている。
計算能力の需要が増大する中で、ディープラーニングモデルの訓練の加速技術に関する包括的な要約が期待されている。
論文 参考訳(メタデータ) (2023-04-07T11:13:23Z) - Systems for Parallel and Distributed Large-Model Deep Learning Training [7.106986689736828]
最近のTransformerモデルは、数十億の学習可能なパラメータにまたがっている。
これらの設計はDL空間に新たなスケール駆動システム課題をもたらした。
この調査では、大規模なモデルトレーニングシステムの展望を探求し、主要な課題とそれに対応する様々なテクニックを強調します。
論文 参考訳(メタデータ) (2023-01-06T19:17:29Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
半教師なし学習と教師なし学習は、ラベルなしの視覚データから学ぶための有望なパラダイムを提供する。
本稿では, 半教師付き学習(SSL)と非教師付き学習(UL)の先進的な深層学習アルゴリズムについて, 統一的な視点による視覚的認識について概説する。
論文 参考訳(メタデータ) (2022-08-24T04:26:21Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。