論文の概要: Retrieval-Enhanced Machine Learning
- arxiv url: http://arxiv.org/abs/2205.01230v1
- Date: Mon, 2 May 2022 21:42:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 01:10:47.116180
- Title: Retrieval-Enhanced Machine Learning
- Title(参考訳): 検索強化機械学習
- Authors: Hamed Zamani and Fernando Diaz and Mostafa Dehghani and Donald Metzler
and Michael Bendersky
- Abstract要約: 本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
- 参考スコア(独自算出の注目度): 110.5237983180089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although information access systems have long supported people in
accomplishing a wide range of tasks, we propose broadening the scope of users
of information access systems to include task-driven machines, such as machine
learning models. In this way, the core principles of indexing, representation,
retrieval, and ranking can be applied and extended to substantially improve
model generalization, scalability, robustness, and interpretability. We
describe a generic retrieval-enhanced machine learning (REML) framework, which
includes a number of existing models as special cases. REML challenges
information retrieval conventions, presenting opportunities for novel advances
in core areas, including optimization. The REML research agenda lays a
foundation for a new style of information access research and paves a path
towards advancing machine learning and artificial intelligence.
- Abstract(参考訳): 情報アクセスシステムは,様々なタスクをこなすのに長い時間を費やしてきたが,機械学習モデルなどのタスク駆動型マシンを含む情報アクセスシステムの利用者範囲を広げる。
このように、索引付け、表現、検索、ランキングの基本的な原則を適用して、モデルの一般化、スケーラビリティ、堅牢性、解釈可能性を大幅に改善することができる。
本稿では,多数の既存モデルを含む汎用検索強化機械学習(REML)フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
ジェネレーティブAI、コンピュータビジョン、自然言語処理は、AIモデルをさまざまな製品に統合するきっかけとなった。
本調査は,大規模ディープラーニングサービスシステムにおける新たな課題と最適化の機会を要約し,分類することを目的としている。
論文 参考訳(メタデータ) (2023-11-22T18:46:05Z) - RRAML: Reinforced Retrieval Augmented Machine Learning [10.94680155282906]
我々はReinforced Retrieval Augmented Machine Learning (RRAML)と呼ばれる新しいフレームワークを提案する。
RRAMLは、大規模な言語モデルの推論機能と、巨大なユーザが提供するデータベースから目的に構築された検索者によって取得された情報を統合する。
この論文で概説された研究課題は、AIの分野に大きな影響を与える可能性があると信じている。
論文 参考訳(メタデータ) (2023-07-24T13:51:19Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - On-device Training: A First Overview on Existing Systems [6.551096686706628]
リソース制約のあるデバイスにいくつかのモデルをデプロイする努力も行われている。
この研究は、デバイス上でモデルトレーニングを可能にする最先端のシステム研究を要約し、分析することを目的としている。
論文 参考訳(メタデータ) (2022-12-01T19:22:29Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z) - Towards Machine Learning for Placement and Routing in Chip Design: a
Methodological Overview [72.79089075263985]
配置とルーティングは、現代のチップ設計フローにおいて必須かつ困難な2つのタスクである。
機械学習は、そのデータ駆動性によって有望な見通しを示しており、知識や事前への依存度は低い。
論文 参考訳(メタデータ) (2022-02-28T06:28:44Z) - A Survey on Semi-parametric Machine Learning Technique for Time Series
Forecasting [4.9341230675162215]
Grey Machine Learning(GML)は、大きなデータセットと、可能性のある結果を予測する時系列用の小さなデータセットを扱うことができる。
本稿では,時系列予測のための半パラメトリック機械学習技術の概要を概観する。
論文 参考訳(メタデータ) (2021-04-02T03:26:20Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。