論文の概要: How Can Creativity Occur in Multi-Agent Systems?
- arxiv url: http://arxiv.org/abs/2111.14310v1
- Date: Mon, 29 Nov 2021 03:19:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 04:38:08.367893
- Title: How Can Creativity Occur in Multi-Agent Systems?
- Title(参考訳): マルチエージェントシステムで創造性を実現するには?
- Authors: Ted Fujimoto
- Abstract要約: 複雑なシステムは、単純な規則に従って構造やエージェントから驚くほど美しい現象が生まれることを示しています。
近年の深層強化学習(英語版)(RL)の成功により、複数の深層RLエージェントの能力を利用して、より大きな利益と高度化の創発的な行動を生み出すことが自然な道のりとなる。
本稿では,マルチエージェントRLにおける創造性の基準を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Complex systems show how surprising and beautiful phenomena can emerge from
structures or agents following simple rules. With the recent success of deep
reinforcement learning (RL), a natural path forward would be to use the
capabilities of multiple deep RL agents to produce emergent behavior of greater
benefit and sophistication. In general, this has proved to be an unreliable
strategy without significant computation due to the difficulties inherent in
multi-agent RL training. In this paper, we propose some criteria for creativity
in multi-agent RL. We hope this proposal will give artists applying multi-agent
RL a starting point, and provide a catalyst for further investigation guided by
philosophical discussion.
- Abstract(参考訳): 複雑な系は、単純な規則に従って構造やエージェントからいかに驚きで美しい現象が生まれるかを示す。
近年の深層強化学習(英語版)(RL)の成功により、複数の深層RLエージェントの能力を利用して、より大きな利益と高度化の創発的な行動を生み出すことができる。
一般に、これはマルチエージェントRLトレーニングに固有の困難さのため、大きな計算をしない信頼できない戦略であることが証明されている。
本稿では,マルチエージェントrlにおけるクリエイティビティの基準を提案する。
この提案は、アーティストにマルチエージェントRLを適用し、哲学的な議論から導かれるさらなる調査の触媒となることを期待する。
関連論文リスト
- EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - Multi-agent Policy Reciprocity with Theoretical Guarantee [24.65151626601257]
提案手法は,不一致状態においてもエージェント間政策を完全に活用できる,新しいマルチエージェントポリシー相互性(PR)フレームワークを提案する。
離散的かつ連続的な環境における実験結果から,PRは既存のRL法や転写RL法よりも優れることが示された。
論文 参考訳(メタデータ) (2023-04-12T06:27:10Z) - A Survey on Explainable Reinforcement Learning: Concepts, Algorithms,
Challenges [38.70863329476517]
強化学習(Reinforcement Learning, RL)は、インテリジェントエージェントが環境と対話して長期的な目標を達成する、一般的な機械学習パラダイムである。
励ましの結果にもかかわらず、ディープニューラルネットワークベースのバックボーンは、専門家が高いセキュリティと信頼性が不可欠である現実的なシナリオにおいて、訓練されたエージェントを信頼し、採用することを妨げるブラックボックスとして広く見なされている。
この問題を緩和するために、本質的な解釈可能性やポストホックな説明可能性を構築することにより、知的エージェントの内部動作に光を放つための大量の文献が提案されている。
論文 参考訳(メタデータ) (2022-11-12T13:52:06Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
強化学習(Reinforcement Learning, RL)は、目標指向のポリシーを学習するためのフレームワークである。
本稿では,RLエージェントが経験した驚きの量と競合する2つのポリシーを相殺する対戦ゲームに基づく,新しい教師なしRL手法を提案する。
本手法は, 明確な相転移を示すことによって, 複雑なスキルの出現につながることを示す。
論文 参考訳(メタデータ) (2021-07-12T17:58:40Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z) - The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems [0.0]
本稿では、複雑な環境チェックとレジリエントな操作に対する新しいアプローチを定式化する、ARL(Adversarial Learning)の概念について述べる。
ARLのクインテッサンスは、システムを探究し、ドメインの知識なしに互いに訓練するエージェントの両方にある。
本稿では、モデルベースDRLベースのアルゴリズムと同様に、広範囲のモデルフリーを使用できるARLソフトウェアアーキテクチャを紹介する。
論文 参考訳(メタデータ) (2020-05-27T19:19:57Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
強化学習(RL)を用いた協調型マルチロボットオブジェクト操作タスクの検討
分散近似RL(DA-RL)とゲーム理論RL(GT-RL)の2つの分散マルチエージェントRLアプローチを提案する。
本稿では, DA-RL と GT-RL を多エージェントシステムに適用し, 大規模システムへの拡張が期待される。
論文 参考訳(メタデータ) (2020-03-21T00:43:54Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
マルチエージェント逆逆強化学習 (MA-AIRL) は, 単エージェントAIRLをマルチエージェント問題に適用する最近の手法である。
本稿では,従来の手法よりもサンプル効率が高く,スケーラブルなマルチエージェント逆RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-24T20:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。